## Summary Report

## Calculated Public Tree Values and Benefits for The City of Ann Arbor

The City of Ann Arbor, Michigan

July, 2009



## Summary Report

# Calculated Public Tree Values and Benefits for The City of Ann Arbor 

The City of Ann Arbor, Michigan

July, 2009

Prepared for:
Kerry Gray, Urban Forest \& Natural Resource Planning Coordinator
City of Ann Arbor, Michigan
100 North Fifth Avenue
Ann Arbor, Michigan 48107-8647

Prepared by:
Davey Resource Group
A Division of The Davey Tree Expert Company
1500 North Mantua Street
P.O. Box 5193

Kent, Ohio 44240
800-828-8312

## Table of Contents

Executive Summary ..... iv
Resource Structure ..... iv
Resource Function and Value ..... v
Resource Management ..... v
Introduction ..... 1
i-Tree Streets Benefit Model Overview ..... 1
i-Tree Streets Benefit Categories ..... 2
Ann Arbor’s Municipal Tree Resource ..... 3
Public Tree Numbers ..... 3
Species Richness and Composition ..... 3
Species Importance ..... 4
Stocking Level ..... 5
Relative Age Distribution ..... 5
Tree Condition ..... 6
Canopy Cover ..... 7
Replacement Value ..... 7
Costs of Managing Ann Arbor’s Municipal Trees ..... 8
Tree Planting and Establishment ..... 8
Maintenance ..... 8
Administration ..... 8
Additional Tree Related Expenditures ..... 8
Benefits of Ann Arbor’s Municipal Trees ..... 9
Electricity and Natural Gas Results ..... 10
Avoided and Sequestered Carbon Dioxide ..... 10
Deposition and Interception ..... 10
Avoided Pollutants ..... 10
BVOC Emissions ..... 10
Net Air Quality Improvement ..... 10
Stormwater Runoff Reductions ..... 11
Aesthetic, Property Value, Social, Economic, and Other Benefits ..... 11
Net Benefits and Benefit-Cost Ratio (BCR) ..... 11
Management Implications ..... 12
Conclusion ..... 13

## Tables

1. i-Tree Streets Analysis Results for Total Annual Benefits per Species in the City of Ann Arbor9
2. i-Tree Streets Analysis Results for Annual Benefits, Net Benefits, and Cost
for Public Trees ..... 12

## Figures

1. Relative Age Distribution of Ann Arbor's Top Ten Public Trees
2. Condition Rating of Inventoried Public Trees.................................................................... 6

## Appendices

A. Further Information
B. Population Summary for the City of Ann Arbor
C. Species Distribution
D. Importance Value for Most Abundant Trees
E. Summary of Stocking Level
F. Relative Age Distribution
G. Structural (Woody) Condition of Trees
H. Canopy Cover
I. Replacement Value (by Species and Zone)
J. Annual Management Costs
K. Annual Benefits Energy (by Species and Zone)
L. Annual Benefits Carbon Dioxide (by Species and Zone)
M. Annual Benefits Air Quality (by Species and Zone)
N. Annual Benefits Stormwater (by Species and Zone)
O. Annual Benefits, Aesthetic, and Other Value (by Species and Zone)
P. Annual Benefits, Net Benefits, and Cost Summary

## Acknowledgements

This project was made possible by:

## City of Ann Arbor Systems Planning Department

While the specific reports and recommendations are unique to this study, the basis for its structure and written content comes from the entire series of Municipal Forest Resource Analysis reports prepared and published by the USDA Forest Service, Pacific Southwest Research Station, Center for Urban Forest Research, and credit should be given to those authors. The Municipal Forest Resource Analysis reports are companions to the regional Tree Guides and i-Tree’s Streets application developed by the USDA Forest Service, Pacific Southwest Research Station, Center for Urban Forest Research.

## Executive Summary

The City of Ann Arbor has a valuable resource in their public trees and is taking a proactive stance to ensure that these benefits are available for the community for years to come. Through Ann Arbor's staffing decisions and commitment to understanding the complexity of its urban forest, the City is creating a positive identity for their municipality and is fostering pride within their community. If left unattended, the benefits afforded by Ann Arbor's public trees will not be fully achieved, and priority maintenance concerns may create unwelcome liability issues in the future. Furthermore, numerous planting sites remain vacant, diminishing the possible magnitude of benefits to Ann Arbor and its citizens provided through public trees.

## Resource Structure

Ann Arbor's tree inventory includes 47,359 publicly managed trees, 8,853 available planting sites, and 843 stumps for a total of 57,055 sites. In order to gain an understanding of the benefits these trees provide the community and the management needs involved, an analysis of Ann Arbor's public tree resource must be performed. Species richness, relative age distribution, condition, and canopy coverage can be used to characterize Ann Arbor's resource as follows:

- There are over 187 distinct species of trees growing throughout the City of Ann Arbor: The predominant public tree species are Norway maple (Acer platanoides, 13.23\%); sugar maple (Acer saccharum, 11.32\%); thornless honeylocust (Gleditsia triacanthos inermis, 7.63\%); red maple (Acer rubrum, 6.91\%), and apple/crabapple (Malus spp., 6.33\%).
- The relative age distribution of Ann Arbor's public trees is made up of $14.28 \%$ young ( $<6$-inch DBH), 40.14\% established trees (6- to 12inch DBH), $36.51 \%$ maturing trees (12- to 24-inch DBH), and 8.97\% mature trees (>24-inch DBH). Many of Ann Arbor's top performing species, in terms of benefits provided, dominate the mature size classes and will require a suitable replacement in size and structure in order to maintain their net benefits


Photograph 1: Trees are a valuable city asset that provides monetary benefits that increase through time. provided. Some of these species include white oak (Quercus alba), American elm (Ulmus americana), and silver maple (Acer saccharinum). Maintaining the flow of benefits provided by the City's urban forest will require a commitment to increase the amount of trees planted annually.

- The majority of public trees in Ann Arbor are in fair condition (54.1\%), with 33.7\% of inventoried trees classified as good and very good. Trees in poor or critical condition make up $11.0 \%$ of the inventory, while trees that are dead or dying make up $1.1 \%$ of the population. There is a need to maintain existing trees to increase their useful lifespan and maintain a flow of benefits, and to remove dead and dying trees as soon as possible.
- In Ann Arbor, the estimated canopy cover of inventoried trees in maintained areas is 780 acres, or about $4.5 \%$ of the City's total land area. .


## Resource Function and Value

The cumulative value provided by Ann Arbor's public trees is averaged to be $\$ 97$ per tree annually, for a gross total of about $\$ 4.6$ million annually. The City's public trees conserve and reduce energy, reduce carbon dioxide levels, improve air quality, mitigate stormwater runoff, and provide other benefits associated with aesthetics, increased property values, and quality of life. Ann Arbor's public trees are providing the community substantial benefits such as:

- Public trees reduce energy and natural gas use in Ann Arbor from shading and climate effects equal to 3,408 MWh and 1,260,313 therms, for a total savings valued at approximately $\$ 2,252,055$, with a citywide average of $\$ 47.55$ per public tree.
- Public trees in Ann Arbor reduce atmospheric $\mathrm{CO}_{2}$ by a net of 7,851 tons per year, valued at $\$ 52,450$ for an average net benefit per tree of $\$ 1.11$.
- The net air quality improvement from the removal and avoidance of air pollutants is valued at $\$ 395,569$ per year, with an average net benefit per tree of $\$ 8.35$.
- Ann Arbor's public trees intercept 65.0 million gallons of stormwater annually. The total value of this benefit to the City is $\$ 519,895$ per year, for an average value of $\$ 10.98$ per inventoried tree.
- The estimated total annual benefit associated with increased property values, aesthetics, and other less tangible improvements is $\$ 1,368,302$ per year, for an average of $\$ 28.89$ per inventoried tree.
- When the City's annual tree-related expenditures are considered, approximately $\$ 1,709,766$ per year, the net annual benefit (benefits minus costs) to the City is $\$ 2,878,470$. The average net benefit for an individual public tree in Ann Arbor is $\$ 60.78$ per year. The City of Ann Arbor receives $\$ 2.68$ in benefits for every $\$ 1$ spent on its municipal forestry program.


## Resource Management

Ann Arbor's public tree resource is rich in the benefits it provides the community. However, maintaining this resource requires constant attention and commitment to achieve sustainability. Urban stressors, such as compacted soils, pollution, limited growing space, and insufficient nutrients, lead to an increased need for an aggressive management program. To maximize the benefits of Ann Arbor's resource and ensure sustainability, the following management practices should be implemented:

- Sustain the existing public tree resource through comprehensive tree maintenance, including new tree establishment and cyclical pruning. Develop a replacement plan for the City's most mature trees (and top benefit producers) to replace them with trees of similar stature gradually before they must be removed.
- Adjust tree planting in the City to expand the extent of the resource, and maintain the flow of benefits over time. Focus on large-stature trees where growing conditions permit and good-performing species to maximize benefits.
- Reduce dependence on Norway maple and sugar maple through careful species selection to achieve greater diversity and guard against catastrophic losses. Currently, maples (Acer spp.) make up approximately 38\% of Ann Arbor’s inventoried public trees.
- Strengthen the City's network of partners and urban forest managers to work together towards the common goal of an improved, more functional, and sustainable public tree resource.


## Introduction

The public trees growing on the rights-of-way and parks in the City of Ann Arbor constitute a valuable community resource. They provide tangible and intangible benefits for diverse services such as: pollution control, energy reduction, stormwater management, property values, wildlife habitat, education, and aesthetics.

Previously, the services and benefits trees provide in the urban and suburban setting were considered to be unquantifiable. However, by using extensive scientific studies and practical research, these benefits can now be confidently calculated using tree inventory information. The results of applying a proven, defensible model and method that determines tree benefit values for the City of Ann Arbor's current tree inventory data are summarized in this report using i-Tree's Streets application. Since Ann Arbor has conducted a complete tree inventory, an accurate insight can be drawn in regards to the overall health of the City's public trees and the benefits they provide the community.

The science behind this model and type of analysis is sound and has been published in peerreviewed journals. The challenge now is to apply the science to enhance the quality of life in the City of Ann Arbor by improving the condition and extent of the urban forest.

## i-Tree Streets Benefit Model Overview

The method used to determine the overall and net values and benefits is the i-Tree's Streets application, which is a component of i-Tree version 3.0, a suite of free software tools recently released by the U.S. Forest Service that can be used to assess and manage community forests. With these tools, cities and urban forest managers can accurately quantify the benefits of urban forests, understand and balance the costs of managing an urban forest, and become better prepared for severe weather emergencies.

Specifically, i-Tree Streets is a tool that quantifies the benefits of public trees and compares them directly with the costs of urban forestry programs to produce accurate net benefit values. It is a statistically valid, financially sound, and defensible cost-


Photograph 2. A Davey Resource Group Inventory Arborist collects data for analysis using i-Tree Streets. benefit analysis tool for urban forestry that may be used with existing inventories or with a sampling of streets in a community. I-Tree's Streets application is formerly known as STRATUM (Street Tree Resource and Analysis Tool for Urban Forest Managers).
Appendix A lists additional sources for further information.

## i-Tree Streets Benefit Categories

Inventory data from the City of Ann Arbor inventory project was entered into the i-Tree Streets model by Davey Resource Group to assess and quantify the beneficial functions of the public tree resource and to place a dollar value on the annual environmental benefits they provide. Data collection began in February, 2009 and was concluded in May, 2009. A functional analysis was performed to determine and quantify these benefits:
> Energy Consumption SavingsThe energy savings that trees provide can be attributed to shading, the cooling effect of transpiration, and wind reduction. These key factors reduce the amount of radiant energy absorbed


Photograph 3. Using the i-Tree Streets analysis software application, Ann Arbor's public tree resource returns an estimated $\$ 4.6$ million in benefits annually back to the community, for a net benefit of $\$ 2,878,470$ per year. in buildings and other hardscapes, cooling the air around buildings in the summer and helping retain heat during cold winter months. The energy savings is realized by lower cooling and heating costs for any type of building.
> Carbon Sequestration-Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is used during a tree's photosynthesis process to produce the natural building blocks necessary for tree growth. This process takes carbon dioxide from the atmosphere and holds it as woody and foliar biomass. This is referred to as carbon sequestration.
> Air Quality Improvements-The air quality of Ann Arbor's urban environment greatly benefits from the presence of street and other public trees. Trees absorb gaseous pollutants in the form of ozone $\left(\mathrm{O}_{3}\right)$ and nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$. Reduction in ozone can also be attributed to the tree shading effect on hardscape surfaces and the transpiration process. Trees intercept volatile organic compounds (VOCs), sulfuric dioxide ( $\mathrm{SO}_{2}$ ), and small particulate matter (PM10), such as dust, ash, dirt, pollen, and smoke, from the air. Trees also emit biogenic volatile organic compounds (BVOCs), an air pollutant that contributes to the formation of ozone, a process which the i-Tree Streets model takes into account.
$>$ Stormwater Mitigation-The City of Ann Arbor's public tree population reduces the volume of stormwater runoff in its neighborhoods and ultimately city-wide. This function and benefit is especially important in developed settings with increased quantities of impervious surfaces (roads, driveways, homes, parking areas) and in areas in close proximity to surface waters. A tree's surface area, especially the leaf surfaces, intercepts and stores rainfall. The root systems of trees increase soil infiltration, thereby decreasing runoff. Trees also reduce stormwater runoff by intercepting raindrops before they hit the ground, reducing soil compaction rates and improving soil absorptive properties. In addition, trees intercept suburban contaminants such as oils, solvents, pesticides, and fertilizers which are often part of stormwater runoff, reducing pollutant discharges into the City's vital waterways.
> Aesthetics and Other Public Values-It may seem difficult to place a dollar value on the benefit Ann Arbor's public trees provide to the overall ambiance of the City and the well-being of neighborhood residents and visitors. However, trees provide beauty to the landscape, privacy to homeowners, and refuge for urban wildlife, and this can be quantified in terms of estimated property value increases.

Because Ann Arbor's tree inventory does not include natural areas, forest preserves, or other nonmanicured portions of the City, a large part of public trees are not represented in the report. As a result, the full extent and benefits of Ann Arbor's public trees may be underestimated.

## Ann Arbor's Municipal Tree Resource

## Public Tree Numbers

Ann Arbor's public tree population is dominated by broadleaf-deciduous trees ( $89.77 \%$ of the total). Broadleaf-deciduous trees usually have larger canopies than coniferous public trees, and because most of the benefits provided by trees are related to leaf surface area, broadleaf trees usually provide the highest level of benefit. There are 4,846 (10.23\%) evergreen and coniferous trees rounding out the population (Appendix B).

## Species Richness and Composition

Ann Arbor's inventoried public tree population includes a mix of more than 187 species (Appendix C). This richness is to be commended, as a variety of species types can decrease the impact of speciesspecific pests and diseases by limiting the number of trees that are susceptible. This, in turn, reduces the time and money spent on mitigating problems resulting from any such episodes. Additionally, a wide variety of tree species may help to limit the impacts from a number of physical events, such as strong storms, wind, ice, flooding, drought, etc.

However, four of the top six occurring species are from the genus Acer (maple). Those four


Photograph 4. American elms (Ulmus americana), with their majestic form, were once the most recognized tree in midwestern communities prior to Dutch elm disease. Today, they represent $1.5 \%$ of all inventoried public trees in Ann Arbor. maple species include: Norway maple (13.2\%); sugar maple (11.3\%); red maple (6.9\%); and silver maple (4.6\%). Overall, 38\% of the trees occurring in Ann Arbor are from the maple genus. Davey Resource Group recommends that no single species represents more than $10 \%$ of the total population and no single genus represents more than $20 \%$ of the total population. Both Norway maple and sugar maple exceed this population management guideline for species, while maples collectively exceed the guideline set for genera representation.

Maintaining a healthy population with an appropriately balanced species composition will help deter a loss of benefits from species-specific pests and diseases. American elm, one of Ann Arbor's most productive species in terms of benefits, were once planted throughout Ann Arbor and the Midwest. In the 1950s and the 1960s, elm trees throughout the Midwest began dying from Dutch elm disease (Ophiostoma ulmi), a microfungi disease that is spread by elm bark beetles. Today, American elms provide Ann Arbor with over $\$ 100,000$ in annual benefits. Considering that Ann Arbor may have lost over $90 \%$ of their American elm population throughout the 1950s and 1960s from Dutch elm disease, that loss in benefits annually may equate to over one million dollars today.

The loss of elm trees throughout the Midwest in the 1950s and 1960s was catastrophic in terms of benefits lost for cities. In many cities and towns, ash (Fraxinus spp.) trees were planted as a replacement for elms. In 2002, Ann Arbor had an estimated 10,000 public ash trees planted across the City. In the summer of 2002, an invasive species known as Agrilus planipennis (emerald ash borer) was introduced in Detroit, Michigan, and began destroying ash trees throughout the greater Detroit area. According to the recent 2009 tree inventory, Ann Arbor has approximately 234 public ash trees, in which 129 are dead or in critical condition. Of these 234 ash trees, 187 are in the 6 - to 12 -inch diameter class or below.

The recent and significant loss of ash trees greatly reduced the annual benefits provided by Ann Arbor's urban forest. Many of the ash trees that were destroyed from emerald ash borer were mature trees, which provide the greatest amount of benefits for a community. In order to restore those benefits lost from the destruction of emerald ash borer, Ann Arbor needs to replant a variety of species types, many of which are capable of developing large spreading canopies similar to ash trees.

## Species Importance

i-Tree Streets calculates the importance of any one species in a public tree inventory by assigning each species an Importance Value (IV). Importance values enable urban forest managers to indicate which trees have the greatest functional capacity within a community. Importance Values can be taken a step further to forecast the loss of benefits should a catastrophic event eliminate a single species.

The top five inventoried public trees in Ann Arbor have the following Importance Values: Norway maple, 12.3; sugar maple, 14.8; honeylocust, 9.4; red maple, 4.8 and apple/crabapple, 3.3. Ann Arbor relies heaviest on the functional capacity of


Photograph 5. Maples (Acer spp.) make up over 50\% of the inventoried tree canopy in Ann Arbor and make up three of the five species with the greatest importance values. sugar maple and Norway maple, which has a higher IV than any other species due to their maturity, greater size, broader leaf area, and prevalence among the City's public trees. In fact, Norway maple, sugar maple, red maple and silver maple constitutes about $50 \%$ of inventoried tree canopy in the City. Meanwhile, honeylocust, which has the third highest IV at 9.4, only represents $7.6 \%$ of the population. Appendix D provides IVs for the 14 most prevalent species.

## Stocking Level

Inventory results indicate that 57,055 trees, stumps, and planting spaces were collected. There were 8,853 vacant planting sites along Ann Arbor's inventoried streets that need to be planted in order to reach a stocking level of $100 \%$. Currently, Ann Arbor's stocking level is $84 \%$, assuming no new planting sites in parks and public properties. Planting site were not recorded in parks and public properties. Of the 8,853 available planting sites, 2,902 (32.8\%) can be utilized for small-stature trees, 2,672 (30.2\%) for medium-stature trees, and 3,279 ( $37.0 \%$ ) for large-stature trees. Appendix E summarizes stocking level for the current inventory data.

Calculating trees per capita is another important measure of tree stocking. Assuming that Ann Arbor has a human population of 114,000 , and no other trees exist beyond the ones included in this study, then public trees per capita for the City is 0.42 , about 1 tree for every 2.4 people.

## Relative Age Distribution

The distribution of ages within a tree population influences present and future costs as well as the flow of benefits. An uneven-aged population allows managers to allocate annual maintenance costs uniformly over many years and assures continuity in overall tree canopy cover.

Ann Arbor urban forest is well established and maturing with a relatively even age distribution, having $14.28 \%$ of inventoried public trees considered young ( $<6$-inch DBH), $40.14 \%$ established trees ( 6 - to 12 -inch DBH), $36.51 \%$ maturing trees ( 12 - to 24 -inch DBH), and $8.97 \%$ mature trees ( $>24$-inch DBH ). An ideal public tree population has an imbalanced age distribution, with higher percentages of young trees than mature trees to minimize fluctuations in functional benefits over time. As trees mature and begin to decline, a tree population skewed towards young trees will ensure that a flow of benefits continues to exist.

Relative age should also be considered between species (Figure 1). Sugar maple, which has the highest Importance Value (14.8) of any public tree in Ann Arbor, is represented in the population as $82 \%$ mature ( $>24$-inch DBH) or maturing (12- to 24 -inch DBH), with $15 \%$ established ( 6 - to 12 -inch DBH) and $3 \%$ young ( $<6$-inch DBH). If young trees of similar size and structure are not planted to improve the age distribution of this species, the return of valuable benefits may be disrupted for future generations. Appendix F displays the relative age distribution for the ten most inventoried public trees in Ann Arbor.


DBH Class

Figure 1. Relative Age Distribution of Ann Arbor's Top Ten Public Trees

## Tree Condition

Tree condition indicates both how well trees are managed and how well they perform given site-specific conditions. The majority of Ann Arbor's public trees (54\%) are in fair condition (Figure 2). When trees are performing at their peek, as are the $33 \%$ of trees classified as good, and the $1 \%$ classified as very good, the benefits they provide will be maximized. Trees in poor condition account for $17 \%$, while $1 \%$ of the tree population is in critical condition. One percent of Ann Arbor's public trees are dead or dying (Appendix G). The goal for dead and dying trees should be zero.


Figure 2. Condition Rating of Inventoried Public Trees

## Canopy Cover

Leaf surface area directly correlates with the benefits of public trees. The greater the leaf surface area exhibited by a tree, the greater the benefits a particular tree is likely to provide the community. In other words, trees with large leaves and spreading canopies tend to produce the most benefits.

In Ann Arbor, the estimated public tree canopy covers approximately 780 acres of the total land area of 17,280 acres ( 27 square miles), or $4.5 \%$ of the City (Appendix H). Ann Arbor should always strive to improve the stocking level by planting additional trees. Planting the right species in the right place will increase canopy cover, leading to greater benefits in the community.

## Replacement Value

Ann Arbor's inventoried public tree resource is an asset valued at $\$ 131.3$ million (Appendix I). This value is determined by considering the cost of replacing Ann Arbor's inventory of 47,359 public trees with trees of a similar stature. Typically, the larger the tree is in size, the more benefits that tree is providing Ann Arbor and. therefore, will have a larger replacement cost. Appendix I demonstrates that the only chinkapin oak (Quercus muhlenbergii) inventoried was in the 36 - to 42 -diameter class and has an estimated replacement cost of $\$ 24.5$ thousand dollars. Likewise, the only chestnut oak (Quercus montana) inventoried was in the 12- ot 18 -diameter class, and has a replacement cost of about $\$ 2.9$ thousand dollars. The species of trees with the greatest replacement cost are Norway maple and sugar maple with replacement values of $\$ 18.6$ and R15.5 million dollars, respectively.

## Costs of Managing Ann Arbor's Municipal Trees

Investing in Ann Arbor’s public trees is well worth the cost. The City's trees provide numerous economical, environmental, psychological, and social benefits to the community. In the 2008 fiscal year, Ann Arbor's total related expenditures for public trees were approximately $\$ 1,709,801$, which is only $0.6 \%$ of the City's total municipal budget of \$298,968,534 (Appendix J).

## Tree Planting and Establishment

Ensuring that the benefits of Ann Arbor's public trees are available for future generations requires quality nursery stock, proper planting techniques, and adequate follow-up care. In 2008, the City of Ann Arbor allocated approximately \$380,414 toward planting new trees. Of Ann Arbor’s total expenditures for tree services, approximately $22 \%$ of costs can be attributed to tree planting. According to recent inventory data, Ann Arbor has an estimated 8,853 vacant planting spaces to be filled. Considering that Davey Resource Group conservatively estimates the cost of


Photograph 6. Planting new trees improves the age structure of urban forests and ensures that the flow of benefits is uninterrupted. purchasing and planting a new tree at $\$ 210$ per tree, Ann Arbor could expect to spend \$1,859,130.00 to reach a stocking level of $100 \%$ in the inventoried area. However, this ballpark figure is only intended to highlight the attention needed to achieve stocking goals in the City, as regional and internal variances are not accounted for.

## Maintenance

In 2008, planting, pruning, pest management, removals, irrigation, and litter clean-up accounted for $\$ 1,373,391$, or $80 \%$ of Ann Arbor's total public tree related expenditures. Removals accounted for approximately $34 \%$ of total expenditures, while pruning accounted for $19 \%$. Approximately 5\% of total expenditures are attributed to litter clean-up, irrigation, and pest management.

## Administration

Approximately $\$ 228,644$ or $13 \%$ of total expenditures for managing public trees in 2008 can be attributed to administration costs. These costs often include forestry personnel salaries, clerical staff, summer help, supplies, training, inspection, and other administration fees.

## Additional Tree Related Expenditures

Other miscellaneous costs in maintaining public trees in 2008 made up approximately \$1,709, 801 or 6\% of Ann Arbors total tree expenditures.

## Benefits of Ann Arbor's Municipal Trees

Public trees provide a host of benefits to the City of Ann Arbor. Public trees conserve energy, reduce carbon dioxide levels, improve air quality, and mitigate stormwater runoff. In addition, trees provide numerous economical, psychological, and social benefits. However, the intent of this study is to determine whether the benefits of public trees outweigh the costs of maintaining them.
This study uses tree inventory data collected in Ann Arbor and i-Tree's Streets application to assess and quantify the beneficial functions of the City's public tree resource and to place a dollar value on the annual benefits they provide. Table 2 presents total annual benefits per species for the 14 most prevalent public trees in Ann Arbor.

Table 1. i-Tree Streets Analysis Results for Total Annual Benefits per Species in the City of Ann Arbor

| Species | Energy | CO $_{2}$ | Air Quality | Stormwater | Aesthetic/Other | Total (\$) |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Norway maple | $\$ 325,780.34$ | $\$ 9,322.87$ | $\$ 57,892.64$ | $\$ 62,040.71$ | $\$ 185,782.33$ | $\$ 640,818.90$ |
| sugar maple | $\$ 345,761.63$ | $\$ 8,186.39$ | $\$ 58,543.27$ | $\$ 87,285.21$ | $\$ 186,026.58$ | $\$ 685,803.08$ |
| thornless <br> honeylocust | $\$ 242,619.64$ | $\$ 4,808.36$ | $\$ 41,682.75$ | $\$ 47,354.79$ | $\$ 144,399.23$ | $\$ 480,864.77$ |
| red maple | $\$ 84,291.92$ | $\$ 1,642.05$ | $\$ 13,406.09$ | $\$ 19,621.02$ | $\$ 94,890.72$ | $\$ 213,851.80$ |
| apple | $\$ 63,366.55$ | $\$ 1,110.12$ | $\$ 10,139.23$ | $\$ 9,491.55$ | $\$ 28,416.94$ | $\$ 112,524.39$ |
| silver maple | $\$ 196,181.74$ | $\$ 4,544.52$ | $\$ 37,250.27$ | $\$ 56,778.58$ | $\$ 63,175.49$ | $\$ 357,930.62$ |
| littleleaf linden | $\$ 77,430.56$ | $\$ 1,635.13$ | $\$ 12,571.05$ | $\$ 14,732.65$ | $\$ 42,139.84$ | $\$ 148,509.23$ |
| London <br> planetree | $\$ 106,510.35$ | $\$ 2,296.21$ | $\$ 17,599.66$ | $\$ 23,424.81$ | $\$ 49,622.11$ | $\$ 199,453.14$ |
| Northern red oak | $\$ 56,600.12$ | $\$ 1,360.20$ | $\$ 9,654.41$ | $\$ 13,284.21$ | $\$ 29,498.66$ | $\$ 110,397.60$ |
| Callery pear | $\$ 23,336.95$ | $\$ 778.45$ | $\$ 4,566.20$ | $\$ 5,465.40$ | $\$ 43,900.86$ | $\$ 78,047.86$ |
| Colorado spruce | $\$ 22,679.95$ | $\$ 436.18$ | $\$ 4,139.20$ | $\$ 6,602.32$ | $\$ 14,780.87$ | $\$ 48,638.53$ |
| Austrian pine | $\$ 31,819.39$ | $\$ 615.59$ | $\$ 5,955.41$ | $\$ 9,087.45$ | $\$ 14,453.32$ | $\$ 61,931.17$ |
| black walnut | $\$ 73,719.62$ | $\$ 1,509.06$ | $\$ 14,175.50$ | $\$ 19,714.56$ | $\$ 47,056.01$ | $\$ 156,174.74$ |
| American elm | $\$ 53,758.18$ | $\$ 1,455.57$ | $\$ 10,447.62$ | $\$ 14,026.01$ | $\$ 40,179.40$ | $\$ 119,866.77$ |
| Siberian elm | $\$ 42,108.88$ | $\$ 1,111.71$ | $\$ 8,113.07$ | $\$ 10,812.93$ | $\$ 30,654.24$ | $\$ 92,800.83$ |
| Japanese zelkova | $\$ 31,808.65$ | $\$ 641.18$ | $\$ 5,180.54$ | $\$ 5,695.90$ | $\$ 26,340.60$ | $\$ 69,666.88$ |
| Eastern white <br> pine | $\$ 11,031.67$ | $\$ 208.90$ | $\$ 2,003.78$ | $\$ 3,258.31$ | $\$ 7,648.90$ | $\$ 24,151.57$ |
| swamp white oak | $\$ 6,960.90$ | $\$ 159.58$ | $\$ 1,054.12$ | $\$ 1,414.80$ | $\$ 11,985.52$ | $\$ 21,574.93$ |
| white oak | $\$ 46,475.00$ | $\$ 1,589.46$ | $\$ 9,216.58$ | $\$ 14,231.32$ | $\$ 26,646.93$ | $\$ 98,159.29$ |
| other public trees | $\$ 409,813.10$ | $\$ 9,038.83$ | $\$ 71,977.14$ | $\$ 95,572.41$ | $\$ 280,703.01$ | $\$ 867,104.48$ |
| Citywide total | $\$ 2,252,055.17$ | $\$ 52,450.38$ | $\$ 395,568.52$ | $\$ 519,894.93$ | $\$ 1,368,301.56$ | $\$ 4,588,270.56$ |

## Electricity and Natural Gas Results

Ann Arbor's inventoried public trees provide a savings of $3,408.5 \mathrm{MWh}(\$ 477,534)$ and $1,260,313.0$ therms ( $\$ 1,774,521$ ) in shading and climate effects (Appendix K). The average savings per inventoried tree in the City is $\$ 47.55$, while Ann Arbor saves a total of \$2,252,055 per year. Sugar maple produces the largest electricity and natural gas savings at $\$ 685,803$, about $15 \%$ of all energy savings from public trees.

## Avoided and Sequestered Carbon Dioxide

Ann Arbor's public tree resource reduces a net 7,851 tons of $\mathrm{CO}_{2}$ per year valued at $\$ 52,450$, with the average savings per inventoried tree at $\$ 1.11$. Norway maples account for $17.8 \%$ of these savings while constituting $13.2 \%$ of the total tree inventory. On the other hand, white oaks make up only $1.1 \%$ of the total population while generating more benefits per tree (\$3.12/tree) than Norway maples (\$1.49/tree). Ann Arbor may want to consider planting more oaks where applicable to take advantage of these benefits, while at the same time increasing species and genera diversity.

Because carbon benefits directly correlate with woody biomass and leaf surface area, higher densities of large trees tend to offset the most $\mathrm{CO}_{2}$. Planting new trees and maintaining existing ones is the best approach to sustaining these benefits. Appendix L presents benefits associated with carbon sequestration for species.

## Deposition and Interception

Each year, Ann Arbor's inventoried public trees provide a savings of $\$ 416,828$ by intercepting or avoiding $\mathrm{O}_{3}, \mathrm{NO}_{2}, \mathrm{PM}_{10}$, and $\mathrm{SO}_{2}$. Norway maple, sugar maple, honeylocust , and silver maple contribute the most benefits towards air quality due to their representation in the public tree population and maturity. The combined savings of these three species makes up $49 \%$ of the total tree population savings, which amounts to $\$ 303,020$ annually.

## Avoided Pollutants

Trees indirectly reduce pollutant emissions such as $\mathrm{NO}_{2}, \mathrm{PM}_{10}$, VOCs, and $\mathrm{SO}_{2}$ by lowering dependence on energy consumption. Sugar maple and Norway maple trees have the greatest impact on reducing energy needs, returning a combined savings of \$60,574.

## BVOC Emissions

Trees emit BVOCs that negatively affect air quality. Larger trees such as sugar maples, honeylocusts, and London planetrees tend to have higher BVOC emissions. In Ann Arbor, BVOC emissions offset total air quality benefits by $\$ 21,259$.

## Net Air Quality Improvement

Ann Arbor experiences a net air quality improvement of \$395,569 per year, averaging \$8.35 per tree. Sugar maples may be high BVOC emitters, but they provide the high number of benefits with a savings of $\$ 58.543$ per year. White oak and black walnut (Juglans nigra) produce the most air quality benefits per tree with an average savings of $\$ 18.07$ and $\$ 17.25$, respectively. Together, white oak and black walnut only make up about $3 \%$ of the total number of trees, which accounts for $6 \%$ of the annual air quality benefits. Appendix M illustrates annual and net benefit values for species on matters of air quality improvement.

## Stormwater Runoff Reductions

Public trees in Ann Arbor intercept 65 million gallons of stormwater annually, for a savings of $\$ 519,895$ (Appendix N ). The average benefit per inventoried public tree is valued at $\$ 10.98$. White oak, silver maple, and black oak intercept the greatest amounts of stormwater per tree. Sugar maple, Norway maple, and silver maple intercept the greatest amount of rainfall per year, with a yearly stormwater interception of 10.1 million, 7.8 million, and 7.1 million gallons, respectively.

## Aesthetic, Property Value, Social, Economic, and Other Benefits

Aesthetic and other related benefits in Ann Arbor provide an estimate of \$1,368,302 annually to the City, for an average of $\$ 28.89$ per inventoried tree. While Norway maples represent $13.2 \%$ of the inventoried population with average benefits of $\$ 29.66$ per tree annually, American elms (1.5\%) return the second most benefits at $\$ 57.24$ per tree (Appendix O). Siberian elms (Ulmus pumila) return the most benefits per tree, with an average savings of $\$ 58.39$. This does not suggest that Ann Arbor should begin to plant Siberian elms for aesthetic benefits, but the majority of the Siberian elms in Ann Arbor are reaching maturity, which influences the amount of aesthetic benefits a tree provides.

## Net Benefits and Benefit-Cost Ratio (BCR)

Ann Arbor receives substantial benefits from its public trees. However, the City must also consider the cost of maintaining this resource. Applying a benefit-cost ratio (BCR) is a useful way to evaluate the public investment in public trees. A BCR is an indicator used to summarize the overall value compared to the costs of a given project. Specifically in this analysis, BCR is the ratio of the cumulative benefits provided by the City's public trees, expressed in monetary terms, compared to the costs associated with their management, also expressed in monetary terms.

It is important to recognize that the i-Tree Streets analysis conducted for Ann Arbor only accounts for the public trees in manicured and maintained areas throughout the City. Ann Arbor has a significant amount of natural and non-manicured areas, whose benefit are not accounted for within this study. If Ann Arbor were to do an inventory and study of its natural areas, the City would most likely see the value of its net benefits increase.

Not all of the benefits attributed to public trees are easily quantified; therefore, some intangible benefits are not included in this study. For example, benefits linked with human needs, such as increased public safety, are difficult to measure. Furthermore, variances within species and between sites often occur to make estimates less precise.

Ann Arbor's public trees provide significant benefits to the community and environment alike. Energy benefits are the largest quantifiable benefits (49\%) to the City annually, with aesthetic and other intangible benefits second at $30 \%$. Stormwater runoff savings account for $11 \%$ of annual benefits. Air quality improvement and carbon dioxide reduction annual benefits each account for $9 \%$ and $1 \%$, respectively. As determined throughout this analysis, larger-growing trees, such as white oak, sugar maple, and Norway maple, consistently supply the most benefits.

The sum of estimated benefits for the City of Ann Arbor (Table 4) is \$4,588,271 annually at an average of an estimated $\$ 97$ per inventoried public tree and $\$ 40$ per capita. When Ann Arbor's annual expenditures are considered ( $\$ 1,709,901$ ), the net annual benefit (benefits minus costs) returned by public trees to the City is $\$ 886,831$. The average net annual benefit for an individual public tree in Ann Arbor is $\$ 60.78$, nearly $\$ 25$ per capita. Based on an inventory count of 47,359 public trees, Ann Arbor receives $\$ 2.68$ in benefits for every $\$ 1$ that is spent on its municipal forestry program (Appendix P).

Table 2. i-Tree Streets Analysis Results for Annual Benefits, Net Benefits, and Cost for Public Trees

|  | Total (\$) | \$/Tree | \$/Capita |
| :--- | :---: | :---: | :---: |
| Total Benefits | $4,588,271$ | 96.88 | 40.25 |
| Total Costs | $1,709,901$ | 36.10 | 15.00 |
| Net Benefits | $2,878,470$ | 60.78 | 25.25 |
| Benefit Cost Ratio | 2.68 |  |  |

## Management Implications

When cared for properly, Ann Arbor's public trees are worth the investment. Citizens of Ann Arbor can take comfort in knowing that the benefits produced by maintaining their urban forest outweigh the costs. Based on this study, every $\$ 1$ spent on public tree management returns an average net value of $\$ 2.68$ in benefits back to the community each year. That is a yearly rate of return of $168 \%$. Unfortunately, public trees can become a burden to any municipality if neglected. As trees grow larger and mature, those that are not adequately maintained become increasingly more costly to manage and may create liability issues. Meanwhile, valuable benefits that are not fully achieved lessen opportunities to encourage a safe, healthy, and more enjoyable environment in which to live.

Implementing a comprehensive tree management program, including new tree establishment and cyclical pruning, is the first step to ensure that benefits produced by the City's public trees surpass the cost of managing them. Currently, 54\% of Ann Arbor's inventoried public trees are considered to be in fair condition. Trees in good and excellent condition account for $34 \%$ of the population, with $11 \%$ of public trees recorded as poor or critical and $1 \%$ inventoried as dead or dying. While these figures indicate a strong commitment to public tree management, Ann Arbor should strive to eliminate all dead and dying trees, replace poor performers, and maintain strong-performing and large-growing species that provide the most benefits. Replacing overutilized species, such as maples (38\%), should be considered to improve overall species diversity and reduce the impact of species-specific pests or disease. White oak, American elm, and London planetree combine to represent about $6 \%$ of the population yet account for $9 \%$ of all benefits. Planting large-growing and underutilized trees like these three species will result in a more sustainable flow of benefits for future generations.

The City of Ann Arbor is on the right path to a sustainable urban forest. The results of this analysis can be used to improve the City's public tree management strategy, promoting a valuable asset with invaluable qualities. By strengthening its network with partners and urban forest managers, Ann Arbor will help to develop the relationships and resources it needs to achieve its urban forestry goals.

## Conclusion

Ann Arbor's urban forest is a valuable resource. The public trees inventoried in this study return an annual gross benefit of $\$ 4,588,271$ to the City each year at an average of $\$ 97$ per tree and $\$ 40$ per capita. Citizens of Ann Arbor see a return on their investment of a $\$ 2.68$ for every $\$ 1$ spent on management. As a result, this i-Tree Streets analysis suggests that there is justification for more attention and funding for urban forestry planning, design, management, and maintenance in the City of Ann Arbor. Planning for a greener and healthier city can begin by including urban forestry in all project discussions and considering creative ways to ensure the private and public tree canopy is kept healthy, well-maintained, safe, and is also enhanced by well-planned planting projects.


## Appendix A

Further Information

# Further Information 

## www.itreetools.org

New York City, New York Municipal Tree Resource Analysis McPherson, E.G., Simpson, J. R., Peper, S. E., Gardner, S. L., Cozad, S. K., Xiao, Q (2007).

Northeast Community Tree Guide
Benefits, Costs, and Strategic Planning
McPherson, E.G., Simpson, J. R., Peper, P. J., Gardner, S. L., Vargas, S.E., Xiao, Q (2007).

## Appendix B

Population Summary for the City of Ann Arbor

| Species | DBH Class (in) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-3 | 3-6 | 6-12 | 12-18 | 18-24 | 24-30 | 30-36 | 36-42 | >42 | Total Standard Error |
| Broadleaf Deciduous Large (BDL) |  |  |  |  |  |  |  |  |  |  |
| Norway maple | 215 | 463 | 1,782 | 2,405 | 1,079 | 274 | 42 | 3 | 1 | 6,264 |
| Sugar maple | 180 | 241 | 588 | 1,909 | 1,715 | 584 | 121 | 17 | 4 | 5,359 |
| Thornless honeylocust | 177 | 376 | 1,183 | 1,407 | 381 | 71 | 17 | 0 | 0 | 3,612 |
| Silver maple | 57 | 66 | 169 | 308 | 550 | 535 | 320 | 134 | 55 | 2,194 |
| london planetree | 93 | 104 | 252 | 508 | 385 | 163 | 34 | 2 | 0 | 1,541 |
| Northern red oak | 218 | 247 | 262 | 143 | 128 | 77 | 31 | 11 | 8 | 1,125 |
| Black walnut | 16 | 27 | 135 | 186 | 227 | 142 | 60 | 20 | 9 | 822 |
| American elm | 62 | 41 | 160 | 138 | 117 | 80 | 64 | 29 | 11 | 702 |
| Siberian elm | 12 | 46 | 116 | 107 | 98 | 84 | 38 | 17 | 7 | 525 |
| Japanese zelkova | 69 | 62 | 176 | 157 | 55 | 4 | 1 | 0 | 0 | 524 |
| Swamp white oak | 270 | 190 | 39 | 10 | 3 | 2 | 1 | 1 | 0 | 516 |
| White oak | 11 | 6 | 24 | 82 | 168 | 101 | 68 | 26 | 24 | 510 |
| bdl OTHER | 1,102 | 676 | 1,167 | 896 | 728 | 406 | 152 | 45 | 54 | 5,226 |
| Total | 2,482 | 2,545 | 6,053 | 8,256 | 5,634 | 2,523 | 949 | 305 | 173 | 28,920 ( $\pm$ NaN) |
| Broadleaf Deciduous Medium (BDM) |  |  |  |  |  |  |  |  |  |  |
| Red maple | 514 | 1,223 | 1,094 | 322 | 77 | 24 | 13 | 5 | 1 | 3,273 |
| Littleleaf linden | 175 | 160 | 666 | 707 | 197 | 47 | 7 | 0 | 0 | 1,959 |
| bdm OTHER | 527 | 240 | 387 | 292 | 179 | 83 | 43 | 21 | 15 | 1,787 |
| Total | 1,216 | 1,623 | 2,147 | 1,321 | 453 | 154 | 63 | 26 | 16 | 7,019 ( $\pm$ NaN) |
| Broadleaf Deciduous Small (BDS) |  |  |  |  |  |  |  |  |  |  |
| Apple | 375 | 834 | 1,563 | 218 | 7 | 0 | 0 | 0 | 0 | 2,997 |
| Callery pear | 223 | 403 | 364 | 104 | 19 | 0 | 0 | 0 | 1 | 1,114 |
| bds OTHER | 1,465 | 632 | 317 | 44 | 4 | 1 | 0 | 0 | 0 | 2,463 |
| Total | 2,063 | 1,869 | 2,244 | 366 | 30 | 1 | 0 | 0 | 1 | 6,574 ( $\pm$ NaN) |

Broadleaf Evergreen Large (BEL)

| bel OTHER | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( $\pm$ NaN) |
| Broadleaf Evergreen Medium (BEM) |  |  |  |  |  |  |  |  |  |  |
| bem OTHER | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( $\pm$ NaN) |
| Broadleaf Evergreen Small (BES) |  |  |  |  |  |  |  |  |  |  |
| bes OTHER | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Total | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 ( $\pm$ NaN) |
| Conifer Evergreen Large (CEL) |  |  |  |  |  |  |  |  |  |  |
| Colorado spruce | 148 | 201 | 407 | 217 | 17 | 2 | 0 | 0 | 0 | 992 |
| Austrian pine | 35 | 63 | 457 | 364 | 44 | 2 | 0 | 0 | 0 | 965 |
| Eastern white pine | 93 | 119 | 207 | 77 | 20 | 4 | 0 | 0 | 0 | 520 |
| cel OTHER | 264 | 298 | 544 | 347 | 107 | 24 | 6 | 2 | 0 | 1,592 |
| Total | 540 | 681 | 1,615 | 1,005 | 188 | 32 | 6 | 2 | 0 | 4,069 ( $\pm \mathrm{NaN}$ ) |
| Conifer Evergreen Medium (CEM) |  |  |  |  |  |  |  |  |  |  |
| cem OTHER | 449 | 137 | 132 | 36 | 3 | 0 | 0 | 0 | 0 | 757 |
| Total | 449 | 137 | 132 | 36 | 3 | 0 | 0 | 0 | 0 | 757 ( $\pm$ NaN) |

Conifer Evergreen Small (CES)

| ces OTHER | 12 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Total | $\mathbf{1 2}$ | $\mathbf{5}$ | $\mathbf{2}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |  |

Palm Evergreen Large (PEL)

| pel OTHER | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Total | $\mathbf{0}$ |  |

Palm Evergreen Medium (PEM)

Population Summary of Public Trees
7/22/2009

| 7/22/2009 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DBH Class (in) |  |  |  |  |  |  |  |  |  |  |
| Species | 0-3 | 3-6 | 6-12 | 12-18 | 18-24 | 24-30 | 30-36 | 36-42 | >42 | Total Standard Error |
| Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( $\pm$ NaN) |
| Palm Evergreen Small (PES) |  |  |  |  |  |  |  |  |  |  |
| Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( $\pm \mathrm{NaN}$ ) |
| Grand Total | 6,763 | 6,860 | 12,193 | 10,984 | 6,308 | 2,710 | 1,018 | 333 | 190 | 47,359 ( $\pm 0$ ) |

## Appendix C Species Distribution



| Species | Percent |
| :--- | ---: |
| Norway maple | 13.2 |
| Sugar maple | 11.3 |
| Thornless honeylocust | 7.6 |
| Red maple | 6.9 |
| Apple | 6.3 |
| Silver maple | 4.6 |
| Littleleaf linden | 4.1 |
| london planetree | 3.3 |
| Northern red oak | 2.4 |
| Callery pear | 2.4 |
| Other species | 37.8 |
| Total | 100.0 |


| Species | DBH Class (in) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-3 | 3-6 | 6-12 | 12-18 | 18-24 | 24-30 | 30-36 | 36-42 | >42 | Total Standard Error |
| Broadleaf Deciduous Large (BDL) |  |  |  |  |  |  |  |  |  |  |
| Norway maple | 215 | 463 | 1,782 | 2,405 | 1,079 | 274 | 42 | 3 | 1 | 6,264 |
| Sugar maple | 180 | 241 | 588 | 1,909 | 1,715 | 584 | 121 | 17 | 4 | 5,359 |
| Thornless honeylocust | 177 | 376 | 1,183 | 1,407 | 381 | 71 | 17 | 0 | 0 | 3,612 |
| Silver maple | 57 | 66 | 169 | 308 | 550 | 535 | 320 | 134 | 55 | 2,194 |
| london planetree | 93 | 104 | 252 | 508 | 385 | 163 | 34 | 2 | 0 | 1,541 |
| Northern red oak | 218 | 247 | 262 | 143 | 128 | 77 | 31 | 11 | 8 | 1,125 |
| Black walnut | 16 | 27 | 135 | 186 | 227 | 142 | 60 | 20 | 9 | 822 |
| American elm | 62 | 41 | 160 | 138 | 117 | 80 | 64 | 29 | 11 | 702 |
| Siberian elm | 12 | 46 | 116 | 107 | 98 | 84 | 38 | 17 | 7 | 525 |
| Japanese zelkova | 69 | 62 | 176 | 157 | 55 | 4 | 1 | 0 | 0 | 524 |
| Swamp white oak | 270 | 190 | 39 | 10 | 3 | 2 | 1 | 1 | 0 | 516 |
| White oak | 11 | 6 | 24 | 82 | 168 | 101 | 68 | 26 | 24 | 510 |
| American basswood | 1 | 16 | 36 | 104 | 151 | 108 | 24 | 10 | 1 | 451 |
| Shagbark hickory | 15 | 26 | 126 | 114 | 67 | 21 | 5 | 0 | 0 | 374 |
| Bur oak | 44 | 41 | 59 | 33 | 51 | 45 | 28 | 17 | 40 | 358 |
| Northern hackberry | 227 | 62 | 15 | 5 | 9 | 0 | 1 | 0 | 0 | 319 |
| Tulip tree | 115 | 36 | 38 | 40 | 42 | 23 | 2 | 0 | 0 | 296 |
| Black locust | 10 | 16 | 56 | 71 | 68 | 23 | 9 | 1 | 1 | 255 |
| Eastern cottonwood | 3 | 6 | 34 | 51 | 78 | 43 | 30 | 3 | 6 | 254 |
| Black cherry | 4 | 14 | 77 | 71 | 49 | 18 | 7 | 4 | 1 | 245 |
| Ginkgo | 136 | 38 | 24 | 13 | 5 | 5 | 1 | 0 | 0 | 222 |
| Freeman maple | 18 | 69 | 83 | 45 | 3 | 0 | 0 | 0 | 0 | 218 |
| Pin oak | 25 | 17 | 90 | 52 | 18 | 6 | 5 | 1 | 2 | 216 |
| English oak | 14 | 32 | 90 | 47 | 13 | 1 | 0 | 0 | 0 | 197 |
| Sweetgum | 56 | 56 | 46 | 6 | 2 | 0 | 0 | 0 | 0 | 166 |
| American sycamore | 1 | 3 | 16 | 45 | 36 | 39 | 12 | 2 | 1 | 155 |
| River birch | 91 | 18 | 19 | 2 | 1 | 0 | 0 | 0 | 0 | 131 |
| Kentucky coffeetree | 38 | 6 | 51 | 18 | 3 | 5 | 1 | 1 | 0 | 123 |
| Ash | 3 | 18 | 51 | 27 | 8 | 1 | 0 | 0 | 0 | 108 |
| Horsechestnut | 9 | 21 | 27 | 17 | 14 | 11 | 2 | 0 | 0 | 101 |
| White ash | 22 | 38 | 31 | 4 | 0 | 2 | 0 | 0 | 0 | 97 |
| Black oak | 12 | 1 | 13 | 13 | 20 | 18 | 12 | 2 | 2 | 93 |
| Amur maple | 28 | 32 | 21 | 6 | 1 | 0 | 0 | 0 | 0 | 88 |
| Shingle oak | 49 | 26 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 86 |
| Pignut hickory | 0 | 2 | 8 | 21 | 28 | 14 | 5 | 0 | 0 | 78 |
| Tree of heaven | 5 | 7 | 18 | 10 | 13 | 5 | 2 | 1 | 0 | 61 |
| Honeylocust | 5 | 3 | 15 | 17 | 11 | 3 | 2 | 2 | 0 | 58 |
| Hardy rubber tree | 41 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 44 |
| Hybrid elm | 27 | 8 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 42 |
| Dawn redwood | 20 | 4 | 11 | 0 | 2 | 2 | 0 | 0 | 0 | 39 |
| Bitternut hickory | 4 | 4 | 4 | 2 | 12 | 6 | 2 | 0 | 0 | 34 |
| Mockernut hickory | 0 | 2 | 16 | 4 | 5 | 3 | 0 | 0 | 0 | 30 |
| Green ash | 11 | 5 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 28 |
| Silver linden | 11 | 7 | 6 | 3 | 0 | 0 | 0 | 0 | 0 | 27 |
| Elm | 0 | 5 | 13 | 7 | 1 | 0 | 0 | 0 | 0 | 26 |
| Sycamore maple | 0 | 0 | 7 | 11 | 1 | 0 | 0 | 0 | 0 | 19 |
| Paper birch | 5 | 3 | 6 | 5 | 0 | 0 | 0 | 0 | 0 | 19 |
| Sawtooth oak | 8 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 19 |
| Smoothleaf elm | 1 | 5 | 6 | 5 | 1 | 1 | 0 | 0 | 0 | 19 |
| American beech | 9 | 2 | 2 | 2 | 0 | 0 | 1 | 0 | 0 | 16 |
| Turkish hazelnut | 9 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
| English walnut | 0 | 0 | 5 | 5 | 0 | 0 | 1 | 0 | 0 | 11 |
| Bigtooth aspen | 0 | 0 | 2 | 2 | 5 | 1 | 0 | 0 | 0 | 10 |
| Baldcypress | 6 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
| Three-flower maple | 0 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
| European beech | 2 | 0 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 7 |
| Oak | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 7 |
| Shumard oak | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |


| Species | DBH Class (in) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-3 | 3-6 | 6-12 | 12-18 | 18-24 | 24-30 | 30-36 | 36-42 | >42 | Total Standard Error |
| Yellow buckeye | 4 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 6 |
| White poplar | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 6 |
| Quaking aspen | 0 | 0 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 6 |
| Butternut | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
| Black maple | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 4 |
| Ohio buckeye | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| Western sugar maple | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| European larch | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 |
| Scarlet oak | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
| Caucasian linden | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| Blue ash | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Chestnut oak | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| Northern pin oak | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Chinkapin oak | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| Willow oak | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Total | 2,482 | 2,545 | 6,053 | 8,256 | 5,634 | 2,523 | 949 | 305 | 173 | 28,920 ( $\pm$ NaN) |

## Broadleaf Deciduous Medium (BDM)

| Red maple | 514 | 1,223 | 1,094 | 322 | 77 | 24 | 13 | 5 | 1 | 3,273 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Littleleaf linden | 175 | 160 | 666 | 707 | 197 | 47 | 7 | 0 | 0 | 1,959 |
| Boxelder | 13 | 28 | 69 | 74 | 38 | 9 | 1 | 1 | 2 | 235 |
| Northern catalpa | 23 | 10 | 14 | 24 | 64 | 53 | 20 | 8 | 2 | 218 |
| Japanese snowbell | 16 | 5 | 74 | 87 | 23 | 0 | 0 | 0 | 0 | 205 |
| Hedge maple | 60 | 83 | 30 | 6 | 0 | 0 | 0 | 0 | 0 | 179 |
| White mulberry | 21 | 31 | 58 | 29 | 19 | 4 | 5 | 3 | 1 | 171 |
| European hornbeam | 76 | 23 | 15 | 5 | 0 | 0 | 0 | 0 | 0 | 119 |
| American hornbeam | 59 | 8 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 74 |
| Yellowwood | 62 | 3 | 4 | 2 | 0 | 2 | 0 | 0 | 0 | 73 |
| Amur corktree | 8 | 5 | 41 | 16 | 2 | 0 | 0 | 0 | 0 | 72 |
| Unknown | 23 | 3 | 18 | 12 | 2 | 0 | 1 | 0 | 0 | 59 |
| Amur maackia | 56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56 |
| Katsura tree | 35 | 5 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 46 |
| Weeping willow | 2 | 3 | 4 | 3 | 5 | 3 | 11 | 6 | 8 | 45 |
| Black willow | 0 | 0 | 5 | 6 | 15 | 8 | 3 | 3 | 1 | 41 |
| Black tupelo | 18 | 11 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 36 |
| Slippery elm | 0 | 2 | 8 | 13 | 7 | 1 | 1 | 0 | 1 | 33 |
| Maple | 13 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 19 |
| Common alder | 16 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 18 |
| Eastern hophornbeam | 7 | 1 | 7 | 2 | 0 | 0 | 0 | 0 | 0 | 17 |
| Red horsechestnut | 12 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 15 |
| Corkscrew willow | 1 | 8 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 12 |
| Osage-orange | 0 | 0 | 4 | 1 | 2 | 2 | 0 | 0 | 0 | 9 |
| Sassafras | 0 | 2 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 9 |
| Gray birch | 2 | 1 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 8 |
| Sweet cherry | 0 | 0 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 6 |
| Willow | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| Chinese chestnut | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
| Red mulberry | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 |
| Royal paulownia | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
| European white birch | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Common persimmon | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| American larch | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| Total | 1,216 | 1,623 | 2,147 | 1,321 | 453 | 154 | 63 | 26 | 16 | 7,019 ( $\pm \mathrm{NaN}$ ) |

Broadleaf Deciduous Small (BDS)

| Apple | 375 | 834 | 1,563 | 218 | 7 | 0 | 0 | 0 | 0 | 2,997 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Callery pear | 223 | 403 | 364 | 104 | 19 | 0 | 0 | 0 | 1 | 1,114 |
| Eastern redbud | 254 | 107 | 74 | 6 | 0 | 0 | 0 | 0 | 0 | 441 |
| Plum | 246 | 70 | 66 | 11 | 2 | 1 | 0 | 0 | 0 | 396 |
| Serviceberry | 260 | 90 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 355 |




## Broadleaf Evergreen Small (BES)

| Holly | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Total | $\mathbf{1}$ | $\mathbf{0}$ |



## Appendix D Importance Value for Most Abundant Trees

## Ann Arbor

## Importance Values for Most Abundant Public Trees

## 7/22/2009

| Species | Number of Trees | $\%$ of Total Trees | Leaf Area (ft ${ }^{2}$ ) | $\%$ of Total <br> Leaf Area | Canopy Cover ( $\mathrm{ft}^{2}$ ) | $\%$ of Total Canopy Cover | Importance Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Norway maple | 6,264 | 13.2 | 10,017,557 | 10.0 | 4,675,644 | 13.8 | 12.3 |
| Sugar maple | 5,359 | 11.3 | 18,602,595 | 18.6 | 4,949,958 | 14.6 | 14.8 |
| Thornless honeylocust | 3,612 | 7.6 | 9,211,874 | 9.2 | 3,806,498 | 11.2 | 9.4 |
| Red maple | 3,273 | 6.9 | 4,250,216 | 4.3 | 1,088,467 | 3.2 | 4.8 |
| Apple | 2,997 | 6.3 | 1,497,000 | 1.5 | 743,141 | 2.2 | 3.3 |
| Silver maple | 2,194 | 4.6 | 11,578,338 | 11.6 | 3,297,696 | 9.7 | 8.6 |
| Littleleaf linden | 1,959 | 4.1 | 2,746,073 | 2.7 | 1,041,714 | 3.1 | 3.3 |
| London planetree | 1,541 | 3.3 | 4,317,425 | 4.3 | 1,669,826 | 4.9 | 4.2 |
| Northern red oak | 1,125 | 2.4 | 2,398,558 | 2.4 | 908,982 | 2.7 | 2.5 |
| Callery pear | 1,114 | 2.4 | 922,011 | 0.9 | 357,053 | 1.1 | 1.4 |
| Colorado spruce | 992 | 2.1 | 882,881 | 0.9 | 333,261 | 1.0 | 1.3 |
| Austrian pine | 965 | 2.0 | 1,189,355 | 1.2 | 471,310 | 1.4 | 1.5 |
| Black walnut | 822 | 1.7 | 4,203,422 | 4.2 | 1,232,722 | 3.6 | 3.2 |
| American elm | 702 | 1.5 | 3,096,986 | 3.1 | 959,545 | 2.8 | 2.5 |
| Siberian elm | 525 | 1.1 | 2,382,492 | 2.4 | 741,609 | 2.2 | 1.9 |
| Japanese zelkova | 524 | 1.1 | 1,127,609 | 1.1 | 388,763 | 1.1 | 1.1 |
| Eastern white pine | 520 | 1.1 | 437,487 | 0.4 | 163,600 | 0.5 | 0.7 |
| Swamp white oak | 516 | 1.1 | 275,493 | 0.3 | 93,721 | 0.3 | 0.5 |
| White oak | 510 | 1.1 | 2,711,611 | 2.7 | 945,577 | 2.8 | 2.2 |
| Other trees | 11,845 | 25.0 | 18,061,628 | 18.1 | 6,102,993 | 18.0 | 20.4 |
| Total | 47,359 | 100.0 | 99,910,612 | 100.0 | 33,972,079 | 100.0 | 100.0 |

## Appendix E <br> Summary of Stocking Level

## Ann Arbor, MI

Summary of Available Planting Sites for Public Trees
7/23/2009

| Zone | No. of Unplanted Sites | No. of Planted Sites | Total No. of Sites | Stocking (\%) | No. of Unplanted Sites |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Small | Medium | Large | Undefined |
| Undefined | 8,853 | 47,359 | 56,212 | 84 | 2,902 | 2,672 | 3,279 | 0 |
| Citywide total | 8,853 | 47,359 | 56,212 | 84 | 2,902 | 2,672 | 3,279 | 0 |

## Appendix F <br> Relative Age Distribution

## Relative Age Distribution of Top 10 Public Tree Species (\%)

7/22/2009


|  |  |  | DBH class |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| (in) |  |  |  |  |  |  |  |  |  |
| Species | $0-3$ | $3-6$ | $6-12$ | $12-18$ | $18-24$ | $24-30$ | $30-36$ | $36-42$ | $>42$ |
| Norway maple | 3.43 | 7.39 | 28.45 | 38.39 | 17.23 | 4.37 | 0.67 | 0.05 | 0.02 |
| Sugar maple | 3.36 | 4.50 | 10.97 | 35.62 | 32.00 | 10.90 | 2.26 | 0.32 | 0.07 |
| Thornless honeylocust | 4.90 | 10.41 | 32.75 | 38.95 | 10.55 | 1.97 | 0.47 | 0.00 | 0.00 |
| Red maple | 15.70 | 37.37 | 33.42 | 9.84 | 2.35 | 0.73 | 0.40 | 0.15 | 0.03 |
| Apple | 12.51 | 27.83 | 52.15 | 7.27 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 |
| Silver maple | 2.60 | 3.01 | 7.70 | 14.04 | 25.07 | 24.38 | 14.59 | 6.11 | 2.51 |
| Littleleaf linden | 8.93 | 8.17 | 34.00 | 36.09 | 10.06 | 2.40 | 0.36 | 0.00 | 0.00 |
| London planetree | 6.04 | 6.75 | 16.35 | 32.97 | 24.98 | 10.58 | 2.21 | 0.13 | 0.00 |
| Northern red oak | 19.38 | 21.96 | 23.29 | 12.71 | 11.38 | 6.84 | 2.76 | 0.98 | 0.71 |
| Callery pear | 20.02 | 36.18 | 32.68 | 9.34 | 1.71 | 0.00 | 0.00 | 0.00 | 0.09 |
| Citywide total | 14.28 | 14.49 | 25.75 | 23.19 | 13.32 | 5.72 | 2.15 | 0.70 | 0.40 |

## Appendix G <br> Structural (Woody) Condition of Trees

Citywide total

$\square$ Critical
$\square$ Dead
-Fair
$\square$ Good
$\square$ Poor
-Very Good

|  | Critical | Dead | Fair | Good | Poor | Very Good |
| :--- | :---: | :---: | :---: | ---: | :---: | :---: |
| Species |  |  |  |  |  |  |
| Norway maple | 0.4 | 0.2 | 61.3 | 27.3 | 10.6 | 0.2 |
| Sugar maple | 0.7 | 0.2 | 55.3 | 29.0 | 14.6 | 0.2 |
| Thornless honeylocust | 0.1 | 0.0 | 41.5 | 53.0 | 3.9 | 1.5 |
| Red maple | 0.5 | 0.5 | 47.9 | 40.1 | 9.7 | 1.3 |
| Apple | 0.8 | 0.9 | 53.0 | 34.4 | 10.1 | 0.8 |
| Silver maple | 0.6 | 0.1 | 60.8 | 17.2 | 21.1 | 0.2 |
| Littleleaf linden | 0.3 | 0.1 | 56.4 | 33.4 | 9.1 | 0.8 |
| London planetree | 0.2 | 0.2 | 32.3 | 59.6 | 4.4 | 3.4 |
| Northern red oak | 1.4 | 0.7 | 52.4 | 33.4 | 11.3 | 0.8 |
| Callery pear | 0.1 | 0.0 | 66.8 | 25.1 | 6.8 | 1.2 |
| Colorado spruce | 0.2 | 0.6 | 44.3 | 46.4 | 3.6 | 4.9 |
| Austrian pine | 1.9 | 2.4 | 61.7 | 25.5 | 8.2 | 0.4 |
| Black walnut | 0.5 | 0.4 | 62.8 | 27.3 | 8.4 | 0.7 |
| American elm | 1.7 | 7.4 | 63.8 | 19.9 | 7.1 | 0.0 |
| Siberian elm | 0.6 | 0.4 | 64.2 | 5.1 | 29.5 | 0.2 |
| Japanese zelkova | 0.8 | 0.0 | 65.6 | 30.2 | 3.2 | 0.2 |
| Eastern white pine | 0.4 | 0.8 | 48.5 | 45.2 | 4.4 | 0.8 |
| Swamp white oak | 1.9 | 0.6 | 58.3 | 26.9 | 9.9 | 2.3 |
| White oak | 0.8 | 0.8 | 66.1 | 20.0 | 12.2 | 0.2 |
| Citywide total | 0.7 | 1.1 | 54.1 | 32.6 | 10.3 | 1.1 |

## Appendix H

Canopy Cover

Canopy Cover of Public Trees (Acres)
7/22/2009

Canopy Cover



## Appendix I <br> Replacement Value (by Species and Zone)

## Replacement Value for Public Trees by Species

7/22/2009

| Species | 0-3 | 3-6 | 6-12 | DBH Class (in) |  |  | 30-36 | 36-42 | >42 | Total | Standard <br> Error | \% of Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 12-18 | 18-24 | 24-30 |  |  |  |  |  |  |
| Norway maple | 28,317 | 175,134 | 2,140,131 | 7,422,467 | 6,064,135 | 2,280,653 | 473,495 | 37,006 | 20,675 | 18,642,012 | $( \pm 0)$ | 14.1969263572: |
| Sugar maple | 27,554 | 81,038 | 501,225 | 3,991,064 | 6,550,981 | 3,332,378 | 948,721 | 83,764 | 27,715 | 15,544,439 | $( \pm 0)$ | 11.8379530837: |
| Thornless honeylocust | 20,762 | 158,307 | 1,807,130 | 5,986,591 | 3,111,186 | 962,318 | 310,222 | 0 | 0 | 12,356,516 | $( \pm 0)$ | 9.41017286029 |
| Red maple | 43,998 | 564,984 | 1,972,118 | 1,556,619 | 680,889 | 338,983 | 278,347 | 149,733 | 30,901 | 5,616,571 | $( \pm 0)$ | 4.27733082256 |
| Apple | 44,180 | 345,373 | 2,120,358 | 741,481 | 36,849 | 0 | 0 | 0 | 0 | 3,288,241 | $( \pm 0)$ | 2.50417790484 |
| Silver maple | 9,831 | 20,780 | 142,752 | 560,715 | 1,851,321 | 2,852,152 | 2,376,973 | 1,399,162 | 627,056 | 9,840,742 | $( \pm 0)$ | 7.49427149908: |
| Littleleaf linden | 19,810 | 68,659 | 1,018,923 | 2,962,180 | 1,584,073 | 467,737 | 112,825 | 0 | 0 | 6,234,208 | $( \pm 0)$ | 4.74769547956 . |
| London planetree | 10,185 | 45,506 | 419,180 | 2,430,813 | 3,624,979 | 2,385,461 | 797,689 | 49,192 | 0 | 9,763,006 | $( \pm 0)$ | $7.43507063204^{\prime}$ |
| Northern red oak | 14,033 | 109,061 | 522,635 | 811,442 | 1,311,135 | 1,154,669 | 643,377 | 288,994 | 254,467 | 5,109,812 | $( \pm 0)$ | 3.891405472481 |
| Callery pear | 38,736 | 141,777 | 314,097 | 185,562 | 11,948 | 0 | 0 | 0 | 13,858 | 705,978 | $( \pm 0)$ | 0.53764142450 . |
| Colorado spruce | 19,634 | 87,459 | 597,210 | 823,445 | 132,656 | 22,379 | 0 | 0 | 0 | 1,682,784 | $( \pm 0)$ | 1.28153375975 |
| Austrian pine | 7,504 | 17,244 | 243,231 | 415,547 | 96,198 | 1,958 | 0 | 0 | 0 | 781,681 | $( \pm 0)$ | 0.595293221581 |
| Black walnut | 2,017 | 10,530 | 160,541 | 569,750 | 1,370,928 | 1,407,365 | 852,600 | 334,593 | 170,570 | 4,878,894 | $( \pm 0)$ | 3.71554821887: |
| American elm | 10,691 | 13,168 | 113,947 | 273,173 | 458,350 | 535,387 | 643,890 | 383,658 | 161,672 | 2,593,935 | $( \pm 0)$ | 1.97542570751: |
| Siberian elm | 1,739 | 9,663 | 43,769 | 81,385 | 144,910 | 208,356 | 146,301 | 78,424 | 49,281 | 763,827 | $( \pm 0)$ | 0.58169689110 |
| Japanese zelkova | 6,547 | 33,662 | 323,131 | 734,338 | 476,840 | 31,034 | 3,562 | 0 | 0 | 1,609,113 | $( \pm 0)$ | $1.22542912500^{\prime}$ |
| Eastern white pine | 12,797 | 54,137 | 293,767 | 324,929 | 161,569 | 49,421 | 0 | 0 | 0 | 896,619 | $( \pm 0)$ | 0.68282550398 |
| Swamp white oak | 25,573 | 83,340 | 65,435 | 41,819 | 15,486 | 12,756 | 18,585 | 0 | 0 | 262,994 | $( \pm 0)$ | 0.20028475888 : |
| White oak | 883 | 2,727 | 47,119 | 385,620 | 1,570,956 | 1,471,144 | 1,459,618 | 731,437 | 689,061 | 6,358,564 | $( \pm 0)$ | 4.84239963059 |
| Norway spruce | 3,564 | 32,604 | 222,382 | 527,384 | 659,439 | 340,173 | 142,922 | 0 | 0 | 1,928,468 | $( \pm 0)$ | $1.46863540535!$ |
| American basswood | 149 | 6,451 | 52,029 | 395,953 | 1,015,614 | 1,270,332 | 408,299 | 168,074 | 27,493 | 3,344,394 | $( \pm 0)$ | 2.54694131650 . |
| Eastern redbud | 43,897 | 36,673 | 49,896 | 8,411 | 0 | 0 | 0 | 0 | 0 | 138,877 | $( \pm 0)$ | $0.10576264275!$ |
| White spruce | 8,574 | 59,210 | 240,709 | 207,104 | 15,486 | 2,126 | 0 | 0 | 0 | 533,208 | $( \pm 0)$ | 0.40606752451 : |
| Northern white cedar | 33,718 | 33,162 | 76,505 | 37,504 | 7,743 | 0 | 0 | 0 | 0 | 188,632 | $( \pm 0)$ | 0.143653805921 |
| Plum | 39,201 | 22,276 | 53,506 | 18,048 | 3,983 | 6,490 | 0 | 0 | 0 | 143,503 | $( \pm 0)$ | 0.10928513917 i |
| Shagbark hickory | 1,939 | 9,576 | 153,178 | 385,665 | 449,485 | 170,006 | 39,650 | 0 | 0 | 1,209,499 | $( \pm 0)$ | 0.92110039110 ! |
| Bur oak | 4,353 | 15,378 | 100,367 | 150,681 | 445,863 | 662,274 | 510,104 | 364,844 | 1,081,375 | 3,335,239 | $( \pm 0)$ | 2.53996992162 . |
| Serviceberry | 28,761 | 38,322 | 7,995 | 0 | 0 | 0 | 0 | 0 | 0 | 75,078 | $( \pm 0)$ | 0.057176218511 |
| Northern hackberry | 32,057 | 24,294 | 17,604 | 16,079 | 50,459 | 0 | 16,962 | 0 | 0 | 157,455 | $( \pm 0)$ | 0.11991079722 : |
| Tulip tree | 11,589 | 16,284 | 60,688 | 152,804 | 312,366 | 306,785 | 23,621 | 0 | 0 | 884,137 | $( \pm 0)$ | $0.67331953288:$ |
| Scotch pine | 956 | 8,440 | 116,070 | 226,564 | 87,953 | 0 | 0 | 0 | 0 | 439,983 | $( \pm 0)$ | 0.33507138638 : |
| Hawthorn | 10,097 | 42,583 | 63,848 | 11,664 | 0 | 0 | 0 | 0 | 0 | 128,191 | $( \pm 0)$ | 0.09762485478 : |
| Black locust | 1,457 | 5,542 | 47,862 | 161,264 | 359,099 | 113,070 | 113,928 | 18,503 | 20,675 | 841,400 | $( \pm 0)$ | 0.64077313327 i |
| Eastern cottonwood | 467 | 1,629 | 15,453 | 59,488 | 171,719 | 159,973 | 155,081 | 24,211 | 41,067 | 629,089 | $( \pm 0)$ | 0.47908597540 . |
| Black cherry | 396 | 3,659 | 59,804 | 126,862 | 158,979 | 83,282 | 70,183 | 29,989 | 0 | 533,155 | $( \pm 0)$ | $0.40602676421!$ |


|  |  |  |  |  | H Class |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | 0-3 | 3-6 | 6-12 | 12-18 | 18-24 | 24-30 | 30-36 | 36-42 | >42 | Total | Standard Error | \% of Total |
| Boxelder | 1,966 | 4,995 | 35,883 | 88,488 | 57,750 | 7,571 | 0 | 0 | 13,858 | 210,510 | $( \pm 0)$ | 0.16031522593 ! |
| Ginkgo | 11,858 | 19,378 | 42,041 | 72,729 | 54,269 | 95,488 | 21,374 | 0 | 0 | 317,136 | $( \pm 0)$ | 0.241516751851 |
| Freeman maple | 3,427 | 26,443 | 74,738 | 111,793 | 15,267 | 0 | 0 | 0 | 0 | 231,668 | $( \pm 0)$ | 0.17642786995 : |
| Northern catalpa | 3,413 | 3,419 | 9,555 | 36,271 | 165,285 | 240,113 | 123,125 | 62,047 | 13,858 | 657,086 | $( \pm 0)$ | 0.500407166011 |
| Pin oak | 3,646 | 4,434 | 84,151 | 124,759 | 90,940 | 25,958 | 55,293 | 17,580 | 27,715 | 434,476 | $( \pm 0)$ | 0.33087758832 |
| Japanese snowbell | 1,484 | 2,399 | 122,994 | 433,033 | 217,798 | 0 | 0 | 0 | 0 | 777,708 | $( \pm 0)$ | 0.59226779337 ، |
| English oak | 1,349 | 13,041 | 162,851 | 211,086 | 98,077 | 12,756 | 0 | 0 | 0 | 499,161 | $( \pm 0)$ | 0.38013858857. |
| Douglas fir | 4,292 | 12,285 | 88,748 | 113,595 | 52,766 | 0 | 0 | 0 | 0 | 271,686 | $( \pm 0)$ | 0.206903896541 |
| Hedge maple | 6,630 | 41,251 | 47,847 | 30,535 | 0 | 0 | 0 | 0 | 0 | 126,262 | $( \pm 0)$ | 0.09615569780 . |
| White mulberry | 3,478 | 6,744 | 23,180 | 25,578 | 26,984 | 13,424 | 9,736 | 12,632 | 0 | 121,756 | $( \pm 0)$ | 0.09272412347 |
| Sweetgum | 4,942 | 27,461 | 97,960 | 32,283 | 24,602 | 0 | 0 | 0 | 0 | 187,247 | $( \pm 0)$ | 0.14259934178 ! |
| Eastern red cedar | 5,928 | 17,827 | 63,945 | 61,108 | 5,863 | 0 | 0 | 0 | 0 | 154,671 | $( \pm 0)$ | 0.11779092379 . |
| American sycamore | 134 | 1,416 | 21,993 | 143,261 | 219,368 | 421,808 | 191,773 | 26,212 | 20,675 | 1,046,643 | $( \pm 0)$ | 0.79707658235 ، |
| Japanese tree lilac | 14,086 | 17,704 | 11,239 | 0 | 0 | 0 | 0 | 0 | 0 | 43,029 | $( \pm 0)$ | 0.03276899524 : |
| River birch | 12,349 | 7,975 | 27,419 | 8,621 | 8,306 | 0 | 0 | 0 | 0 | 64,669 | $( \pm 0)$ | 0.04924922979 |
| Kentucky coffeetree | 3,586 | 3,580 | 107,484 | 109,835 | 36,903 | 69,229 | 20,880 | 27,643 | 0 | 379,140 | $( \pm 0)$ | 0.28873591175 ، |
| European hornbeam | 7,304 | 11,193 | 10,086 | 21,573 | 0 | 0 | 0 | 0 | 0 | 50,157 | $( \pm 0)$ | 0.03819705487 |
| Ash | 287 | 3,365 | 25,266 | 33,117 | 18,586 | 3,786 | 0 | 0 | 0 | 84,408 | $( \pm 0)$ | 0.06428115599 ، |
| Eastern hemlock | 11,452 | 9,145 | 9,592 | 3,043 | 0 | 0 | 0 | 0 | 0 | 33,232 | $( \pm 0)$ | 0.02530773317 |
| Horsechestnut | 1,611 | 7,158 | 24,559 | 28,211 | 37,504 | 51,916 | 9,404 | 0 | 0 | 160,364 | $( \pm 0)$ | 0.12212571911: |
| White ash | 1,693 | 4,701 | 3,256 | 701 | 0 | 1,082 | 0 | 0 | 0 | 11,432 | $( \pm 0)$ | 0.00870623420 ، |
| Black oak | 1,345 | 523 | 16,858 | 40,316 | 103,088 | 126,703 | 147,226 | 37,006 | 49,965 | 523,030 | $( \pm 0)$ | 0.39831671252 |
| White fir | 2,669 | 7,556 | 33,550 | 101,328 | 42,502 | 0 | 0 | 0 | 0 | 187,605 | $( \pm 0)$ | 0.142871427791 |
| Amur maple | 3,014 | 8,868 | 11,820 | 6,085 | 5,863 | 0 | 0 | 0 | 0 | 35,650 | $( \pm 0)$ | 0.02714976999: |
| Japanese maple | 5,316 | 7,916 | 24,600 | 3,983 | 0 | 0 | 0 | 0 | 0 | 41,814 | $( \pm 0)$ | 0.03184378042 : |
| Shingle oak | 4,467 | 10,182 | 16,359 | 5,642 | 0 | 0 | 0 | 0 | 0 | 36,650 | $( \pm 0)$ | 0.02791080060 : |
| Pignut hickory | 0 | 739 | 9,592 | 64,658 | 162,694 | 162,789 | 82,099 | 0 | 0 | 482,571 | $( \pm 0)$ | 0.36750440883 : |
| American hornbeam | 5,789 | 4,219 | 8,856 | 3,983 | 0 | 0 | 0 | 0 | 0 | 22,847 | $( \pm 0)$ | 0.01739922360 . |
| Yellowwood | 9,301 | 893 | 3,972 | 3,043 | 0 | 0 | 0 | 0 | 0 | 17,209 | $( \pm 0)$ | 0.01310554352 : |
| Washington hawthorn | 1,883 | 18,813 | 16,568 | 0 | 0 | 0 | 0 | 0 | 0 | 37,263 | $( \pm 0)$ | 0.028377830591 |
| Amur corktree | 655 | 2,215 | 62,857 | 76,068 | 13,748 | 0 | 0 | 0 | 0 | 155,544 | $( \pm 0)$ | 0.118455318941 |
| Balsam fir | 10,241 | 3,508 | 3,662 | 3,294 | 0 | 0 | 0 | 0 | 0 | 20,705 | $( \pm 0)$ | 0.01576798035 : |
| Goldenrain tree | 4,773 | 4,219 | 3,567 | 23,233 | 7,743 | 0 | 0 | 0 | 0 | 43,535 | $( \pm 0)$ | 0.03315433798 : |
| Tree of heaven | 773 | 1,901 | 8,798 | 8,138 | 22,253 | 11,467 | 9,736 | 6,316 | 0 | 69,383 | $( \pm 0)$ | 0.05283875018 ، |
| Unknown | 1,213 | 775 | 17,143 | 31,169 | 10,130 | 0 | 12,468 | 0 | 0 | 72,899 | $( \pm 0)$ | 0.055516254411 |
| Honeylocust | 599 | 1,346 | 20,449 | 60,009 | 83,335 | 33,569 | 16,290 | 21,550 | 0 | 237,147 | $( \pm 0)$ | 0.18060079822 |
| Flowering dogwood | 5,680 | 3,926 | 3,256 | 0 | 0 | 0 | 0 | 0 | 0 | 12,862 | $( \pm 0)$ | 0.009795166661 |
| Amur maackia | 7,217 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7,217 | $( \pm 0)$ | $0.00549609197!$ |
| Common buckthorn | 2,130 | 5,315 | 12,739 | 0 | 0 | 0 | 0 | 0 | 0 | 20,185 | $( \pm 0)$ | 0.015371790741 |
| Paradise apple | 724 | 6,678 | 15,712 | 6,308 | 0 | 0 | 0 | 0 | 0 | 29,421 | $( \pm 0)$ | 0.022405843581 |


|  |  |  |  |  | H Class |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | 0-3 | 3-6 | 6-12 | 12-18 | 18-24 | 24-30 | 30-36 | 36-42 | >42 | Total | Standard Error | \% of Total |
| Red pine | 170 | 2,626 | 24,627 | 85,184 | 16,440 | 0 | 0 | 0 | 0 | 129,048 | $( \pm 0)$ | 0.09827691092 ! |
| Striped maple | 5,648 | 369 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6,017 | $( \pm 0)$ | 0.00458248604 |
| Katsura tree | 2,366 | 2,259 | 9,394 | 11,897 | 0 | 0 | 0 | 0 | 0 | 25,916 | $( \pm 0)$ | 0.01973654734 |
| White fringetree | 8,711 | 321 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9,032 | $( \pm 0)$ | 0.006878174411 |
| Weeping willow | 181 | 1,698 | 8,571 | 10,761 | 38,350 | 42,970 | 137,954 | 66,804 | 105,580 | 412,868 | $( \pm 0)$ | 0.31442157417: |
| Hardy rubber tree | 4,686 | 1,035 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5,721 | $( \pm 0)$ | 0.00435692917، |
| Juniper spp. | 3,642 | 2,217 | 14,339 | 0 | 0 | 0 | 0 | 0 | 0 | 20,198 | $( \pm 0)$ | 0.015381936501 |
| Miyabei maple | 7,319 | 1,229 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8,547 | $( \pm 0)$ | 0.00650915442: |
| Hybrid elm | 4,506 | 3,365 | 3,751 | 0 | 0 | 0 | 0 | 0 | 0 | 11,622 | $( \pm 0)$ | 0.00885104320: |
| Black willow | 0 | 0 | 3,397 | 6,308 | 23,897 | 27,040 | 18,807 | 42,399 | 13,858 | 135,705 | $( \pm 0)$ | 0.10334716142 。 |
| Dawn redwood | 1,929 | 2,510 | 24,082 | 0 | 24,602 | 40,582 | 0 | 0 | 0 | 93,704 | $( \pm 0)$ | $0.07136116327!$ |
| Black tupelo | 1,971 | 3,766 | 10,332 | 0 | 0 | 0 | 0 | 0 | 0 | 16,068 | $( \pm 0)$ | 0.012236992461 |
| Bitternut hickory | 538 | 1,786 | 6,104 | 3,043 | 71,820 | 42,502 | 27,988 | 0 | 0 | 153,780 | $( \pm 0)$ | 0.11711215810: |
| Slippery elm | 0 | 739 | 9,107 | 41,077 | 45,926 | 9,623 | 0 | 0 | 20,675 | 127,147 | $( \pm 0)$ | 0.09682932462 : |
| Kousa dogwood | 1,612 | 4,798 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6,411 | $( \pm 0)$ | 0.00488200957 ! |
| Paperbark maple | 4,301 | 2,003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6,304 | $( \pm 0)$ | 0.00480103732 |
| Mockernut hickory | 0 | 886 | 22,993 | 19,666 | 50,651 | 42,970 | 0 | 0 | 0 | 137,166 | $( \pm 0)$ | 0.10445942396 |
| Green ash | 986 | 493 | 2,519 | 10,142 | 0 | 0 | 0 | 0 | 0 | 14,140 | $( \pm 0)$ | 0.01076856602 : |
| Chinese magnolia; Sauce | 1,827 | 2,298 | 7,146 | 9,953 | 0 | 0 | 0 | 0 | 0 | 21,224 | $( \pm 0)$ | 0.016163143421 |
| Persian parrotia | 4,315 | 641 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4,956 | $( \pm 0)$ | 0.003774034151 |
| Silver linden | 1,244 | 4,150 | 10,701 | 13,608 | 0 | 0 | 0 | 0 | 0 | 29,702 | $( \pm 0)$ | 0.02261960908 ! |
| Elm | 0 | 935 | 6,440 | 8,586 | 2,323 | 0 | 0 | 0 | 0 | 18,285 | $( \pm 0)$ | 0.01392470486 |
| Tatarian maple | 3,099 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3,099 | $( \pm 0)$ | 0.00236040148 ! |
| Pagoda dogwood | 1,789 | 321 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2,109 | $( \pm 0)$ | 0.00160626447: |
| Common smoketree | 2,703 | 1,736 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4,440 | $( \pm 0)$ | 0.00338103068 ، |
| Jack pine | 928 | 321 | 11,395 | 9,287 | 0 | 0 | 0 | 0 | 0 | 21,931 | $( \pm 0)$ | 0.016701310611 |
| Maple | 1,020 | 1,078 | 678 | 0 | 0 | 0 | 0 | 0 | 0 | 2,776 | $( \pm 0)$ | 0.00211377406 : |
| Sycamore maple | 0 | 0 | 4,651 | 15,721 | 5,863 | 0 | 0 | 0 | 0 | 26,234 | $( \pm 0)$ | 0.019978750651 |
| Paper birch | 888 | 962 | 6,157 | 13,142 | 0 | 0 | 0 | 0 | 0 | 21,148 | $( \pm 0)$ | 0.01610553364 |
| Sawtooth oak | 631 | 3,522 | 2,091 | 0 | 0 | 0 | 0 | 0 | 0 | 6,243 | $( \pm 0)$ | 0.00475472374 : |
| Smoothleaf elm | 164 | 1,549 | 7,219 | 13,142 | 3,983 | 6,490 | 0 | 0 | 0 | 32,546 | $( \pm 0)$ | $0.02478565131^{\prime}$ |
| Common alder | 1,673 | 0 | 1,633 | 0 | 0 | 0 | 0 | 0 | 0 | 3,305 | $( \pm 0)$ | 0.00251708292 : |
| Star magnolia | 1,585 | 2,022 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3,608 | $( \pm 0)$ | 0.002747425991 |
| Eastern hophornbeam | 736 | 593 | 9,471 | 7,966 | 0 | 0 | 0 | 0 | 0 | 18,765 | $( \pm 0)$ | $0.01429051423!$ |
| American beech | 1,128 | 952 | 3,188 | 7,025 | 0 | 0 | 16,290 | 0 | 0 | 28,583 | $( \pm 0)$ | 0.02176781319 |
| Red horsechestnut | 1,670 | 893 | 1,163 | 0 | 0 | 0 | 0 | 0 | 0 | 3,725 | $( \pm 0)$ | $0.00283697534 i$ |
| Magnolia | 1,611 | 321 | 4,954 | 0 | 0 | 0 | 0 | 0 | 0 | 6,886 | $( \pm 0)$ | 0.00524399588 : |
| common lilac | 1,379 | 1,282 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2,661 | $( \pm 0)$ | 0.00202660049: |
| Sargent cherry | 1,502 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,502 | $( \pm 0)$ | 0.00114354788 : |
| Common pear | 232 | 454 | 2,548 | 10,513 | 0 | 0 | 0 | 0 | 0 | 13,747 | $( \pm 0)$ | 0.01046946602 ، |


|  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | 0-3 | 3-6 | 6-12 | 12-18 | 18-24 | 24-30 | 30-36 | 36-42 | >42 | Total | Standard Error | \% of Total |
| Corkscrew willow | 232 | 2,698 | 849 | 2,103 | 0 | 0 | 0 | 0 | 0 | 5,882 | ( $\pm 0)$ | $0.00447932460^{\prime}$ |
| Turkish hazelnut | 1,165 | 0 | 3,567 | 0 | 0 | 0 | 0 | 0 | 0 | 4,732 | $( \pm 0)$ | 0.00360350686 : |
| English walnut | 0 | 0 | 8,610 | 19,914 | 0 | 0 | 19,023 | 0 | 0 | 47,547 | $( \pm 0)$ | $0.03620979544!$ |
| Spruce | 70 | 1,379 | 2,309 | 0 | 0 | 6,527 | 0 | 0 | 0 | 10,285 | $( \pm 0)$ | $0.00783251250^{\prime}$ |
| Serbian spruce | 1,468 | 523 | 1,163 | 0 | 0 | 0 | 0 | 0 | 0 | 3,154 | $( \pm 0)$ | 0.00240198388: |
| Mugo pine | 1,707 | 0 | 759 | 0 | 0 | 0 | 0 | 0 | 0 | 2,466 | $( \pm 0)$ | 0.00187804740 . |
| Bigtooth aspen | 0 | 0 | 1,295 | 2,325 | 14,894 | 3,356 | 0 | 0 | 0 | 21,871 | $( \pm 0)$ | 0.01665563556 ، |
| American filbert | 1,051 | 641 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,692 | $( \pm 0)$ | 0.00128885372 |
| Osage-orange | 0 | 0 | 4,898 | 4,453 | 8,683 | 14,323 | 0 | 0 | 0 | 32,357 | $( \pm 0)$ | 0.024641606281 |
| Sassafras | 0 | 739 | 0 | 3,550 | 0 | 0 | 0 | 0 | 0 | 4,289 | $( \pm 0)$ | 0.00326616296 : |
| Baldcypress | 569 | 593 | 2,091 | 0 | 0 | 0 | 0 | 0 | 0 | 3,253 | $( \pm 0)$ | 0.00247736973 : |
| Three-flower maple | 0 | 2,617 | 3,972 | 0 | 0 | 0 | 0 | 0 | 0 | 6,590 | $( \pm 0)$ | 0.00501828141: |
| Gray birch | 328 | 321 | 1,840 | 2,103 | 3,983 | 0 | 0 | 0 | 0 | 8,574 | $( \pm 0)$ | 0.006529421551 |
| Leyland cypress | 232 | 0 | 849 | 7,184 | 0 | 0 | 0 | 0 | 0 | 8,266 | $( \pm 0)$ | 0.00629469179 |
| Yew | 359 | 2,092 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2,451 | $( \pm 0)$ | 0.00186678827: |
| Trident maple | 784 | 0 | 1,647 | 0 | 0 | 0 | 0 | 0 | 0 | 2,431 | $( \pm 0)$ | 0.00185171419 ! |
| European beech | 218 | 0 | 4,898 | 10,761 | 0 | 0 | 0 | 0 | 0 | 15,877 | $( \pm 0)$ | 0.01209148914: |
| Goldenchain tree | 492 | 1,229 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,720 | $( \pm 0)$ | 0.00131003220 |
| Oak | 123 | 488 | 0 | 2,323 | 4,517 | 7,441 | 0 | 0 | 0 | 14,892 | $( \pm 0)$ | $0.01134112593!$ |
| Shumard oak | 0 | 0 | 10,701 | 0 | 0 | 0 | 0 | 0 | 0 | 10,701 | $( \pm 0)$ | 0.00814933643 i |
| Yellow buckeye | 860 | 0 | 1,203 | 2,103 | 0 | 0 | 0 | 0 | 0 | 4,166 | $( \pm 0)$ | 0.00317267568 |
| Japanese white pine | 170 | 1,576 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,746 | $( \pm 0)$ | 0.00132932478 , |
| White poplar | 0 | 0 | 0 | 0 | 10,513 | 0 | 0 | 0 | 0 | 10,513 | $( \pm 0)$ | 0.00800654240 r |
| Quaking aspen | 0 | 0 | 1,072 | 2,325 | 2,979 | 0 | 0 | 0 | 0 | 6,376 | $( \pm 0)$ | 0.00485565766: |
| Sweet cherry | 0 | 0 | 3,972 | 3,043 | 0 | 0 | 0 | 0 | 0 | 7,015 | $( \pm 0)$ | 0.005342370761 |
| Peach | 819 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 819 | $( \pm 0)$ | 0.000623894661 |
| Viburnum | 983 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 983 | $( \pm 0)$ | 0.000748673601 |
| American smoketree | 478 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 478 | $( \pm 0)$ | 0.00036393855 : |
| Russian olive | 0 | 0 | 1,699 | 2,103 | 0 | 0 | 0 | 0 | 0 | 3,801 | $( \pm 0)$ | 0.00289487713 ! |
| Butternut | 134 | 369 | 2,325 | 0 | 0 | 0 | 0 | 0 | 0 | 2,829 | $( \pm 0)$ | 0.002154618561 |
| European mountain ash | 0 | 0 | 2,548 | 0 | 0 | 0 | 0 | 0 | 0 | 2,548 | $( \pm 0)$ | $0.00194035298^{\prime}$ |
| Black maple | 0 | 0 | 849 | 4,205 | 0 | 0 | 0 | 0 | 0 | 5,055 | $( \pm 0)$ | 0.00384940129 |
| Ohio buckeye | 860 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 860 | $( \pm 0)$ | 0.00065508940 ( |
| Pussy willow | 0 | 641 | 849 | 0 | 0 | 0 | 0 | 0 | 0 | 1,490 | $( \pm 0)$ | 0.00113497323 : |
| Ponderosa pine | 0 | 0 | 0 | 8,489 | 6,803 | 0 | 0 | 0 | 0 | 15,292 | $( \pm 0)$ | 0.01164571542 |
| Willow | 492 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | $( \pm 0)$ | 0.000374336801 |
| Tamarix | 0 | 641 | 0 | 2,103 | 0 | 0 | 0 | 0 | 0 | 2,744 | $( \pm 0)$ | 0.002089497381 |
| Western sugar maple | 328 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 328 | $( \pm 0)$ | 0.00024955786 |
| Pawpaw | 164 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | $( \pm 0)$ | 0.00012477893. |
| Chinese chestnut | 0 | 0 | 849 | 2,979 | 0 | 0 | 0 | 0 | 0 | 3,828 | $( \pm 0)$ | $0.00291530467^{\prime}$ |


|  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | 0-3 | 3-6 | 6-12 | 12-18 | 18-24 | 24-30 | 30-36 | 36-42 | >42 | Total | Standard Error | \% of Total |
| Nootka falsecypress | 269 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 269 | $( \pm 0)$ | 0.00020481454 |
| European filbert | 0 | 641 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 641 |  | 0.00048818890 ، |
| European larch | 0 | 523 | 0 | 0 | 5,863 | 0 | 0 | 0 | 0 | 6,386 | $( \pm 0)$ | 0.004863503381 |
| Sweetbay magnolia | 396 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 396 |  | 0.00030154908 : |
| Red mulberry | 0 | 0 | 0 | 0 | 0 | 3,356 | 4,813 | 0 | 0 | 8,169 |  | $0.00622130803:$ |
| Royal paulownia | 0 | 0 | 849 | 2,103 | 0 | 0 | 0 | 0 | 0 | 2,952 |  | 0.002248092811 |
| Pin cherry | 164 | 454 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 618 |  | $0.00047057940^{\prime}$ |
| Scarlet oak | 0 | 0 | 0 | 0 | 0 | 12,756 | 0 | 0 | 0 | 12,756 |  | 0.00971476377: |
| American mountain ash | 0 | 0 | 849 | 0 | 0 | 0 | 0 | 0 | 0 | 849 |  | 0.00064678432 ! |
| Caucasian linden | 298 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 298 |  | 0.00022676757 |
| Tag alder | 164 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 164 |  | 0.00012477893: |
| Allegheny serviceberry | 0 | 0 | 0 | 2,103 | 0 | 0 | 0 | 0 | 0 | 2,103 | $( \pm 0)$ | 0.00160130848 |
| Devils-walkingstick | 0 | 321 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 321 | $( \pm 0)$ | 0.00024409445 : |
| European white birch | 274 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 274 | $( \pm 0)$ | 0.000208463341 |
| Hinoki falsecypress | 0 | 0 | 536 | 0 | 0 | 0 | 0 | 0 | 0 | 536 | $( \pm 0)$ | 0.00040815329 |
| gray dogwood | 232 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 232 |  | 0.00017677015 : |
| Cornelian cherry | 128 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 128 |  | 9.753719376191 |
| Cockspur hawthorn | 0 | 369 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 369 | $( \pm 0)$ | 0.00028138055 : |
| Common persimmon | 0 | 0 | 0 | 0 | 5,642 | 0 | 0 | 0 | 0 | 5,642 |  | 0.00429688417 : |
| Blue ash | 134 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 134 | $( \pm 0)$ | 0.00010240727: |
| Carolina silverbell | 232 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  | 0.00017677015 : |
| Witch hazel | 149 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 149 | $( \pm 0)$ | 0.000113383781 |
| Holly | 149 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 149 | $( \pm 0)$ | 0.000113383781 |
| American larch | 0 | 0 | 0 | 4,453 | 0 | 0 | 0 | 0 | 0 | 4,453 |  | 0.003391041261 |
| Pine | 96 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | $( \pm 0)$ | 7.27877111370 |
| Japanese black pine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | $( \pm 0)$ | 0 |
| Cherry plum | 0 | 385 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 385 | $( \pm 0)$ | 0.00029297849 |
| Chestnut oak | 0 | 0 | 0 | 2,979 | 0 | 0 | 0 | 0 | 0 | 2,979 | $( \pm 0)$ | 0.00226852034 i |
| Northern pin oak | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | $( \pm 0)$ | 0 |
| Chinkapin oak | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24,596 | 0 | 24,596 | $( \pm 0)$ | $0.01873140292^{\prime}$ |
| Willow oak | 105 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | $( \pm 0)$ | 8.00356137410 ! |
| Bristly locust | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | $( \pm 0)$ | 0 |
| Yellowhorn | 164 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 164 | $( \pm 0)$ | 0.00012477893: |
| Citywide total | 834,396 | 2,789,508 | 15,855,444 | 35,302,015 | 34,922,927 | 22,166,257 | 11,471,231 | 4,486,369 | 3,482,048 | 131,310,194 | $( \pm 0)$ | 100 |

## Appendix J <br> Annual Management Costs

## Ann Arbor

Annual Management Costs of Public Trees
7/22/2009

| Expenditures | Total (\$) | \$/Tree | \$/Capita |
| :--- | ---: | ---: | ---: |
| Purchasing Trees and Planting | 380,414 | 8.03 | 3.34 |
| Contract Pruning | 329,260 | 6.95 | 2.89 |
| Pest Management | 303 | 0.01 | 0.00 |
| Irrigation | 1,012 | 0.02 | 0.01 |
| Removal | 585,544 | 12.36 | 5.14 |
| Administration | 210,726 | 4.45 | 1.85 |
| Inspection/Service | 17,918 | 0.38 | 0.16 |
| Infrastructure Repairs | 0 | 0.00 | 0.00 |
| Litter Clean-up | 76,858 | 1.62 | 0.67 |
| Liability/Claim | 0 | 0.00 | 0.00 |
| Other Cost | 107,766 | 2.28 | 0.95 |
| Total Expenditures | $1,709,801$ | 36.10 | 15.00 |

## Appendix K <br> Annual Benefits Energy (by Species and Zone)

Annual Energy Benefits of Public Trees By Species
7/22/2009

| Species | Total Electricity <br> (MWh) | Electricity <br> (\$) | Total Natural Gas (Therms) | Natural Gas (\$) | Total Standard <br> (\$) Error | $\%$ of Total Trees | $\begin{gathered} \text { \% of } \\ \text { Total \$ } \end{gathered}$ | Avg. <br> \$/tree |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Norway maple | 489.5 | 68,581 | 182,670.3 | 257,200 | 325,780 (N/A) | 13.2 | 14.5 | 52.01 |
| Sugar maple | 511.4 | 71,648 | 194,683.3 | 274,114 | 345,762 (N/A) | 11.3 | 15.4 | 64.52 |
| Thornless honeylocust | 376.7 | 52,774 | 134,833.8 | 189,846 | 242,620 (N/A) | 7.6 | 10.8 | 67.17 |
| Red maple | 115.1 | 16,128 | 48,411.6 | 68,163 | 84,292 (N/A) | 6.9 | 3.7 | 25.75 |
| Apple | 77.4 | 10,850 | 37,298.4 | 52,516 | 63,367 (N/A) | 6.3 | 2.8 | 21.14 |
| Silver maple | 303.0 | 42,448 | 109,185.6 | 153,733 | 196,182 (N/A) | 4.6 | 8.7 | 89.42 |
| Littleleaf linden | 117.7 | 16,494 | 43,278.5 | 60,936 | 77,431 (N/A) | 4.1 | 3.4 | 39.53 |
| London planetree | 164.8 | 23,085 | 59,250.7 | 83,425 | 106,510 (N/A) | 3.3 | 4.7 | 69.12 |
| Northern red oak | 86.2 | 12,070 | 31,626.2 | 44,530 | 56,600 (N/A) | 2.4 | 2.5 | 50.31 |
| Callery pear | 36.2 | 5,073 | 12,971.2 | 18,263 | 23,337 (N/A) | 2.4 | 1.0 | 20.95 |
| Colorado spruce | 36.5 | 5,108 | 12,480.0 | 17,572 | 22,680 (N/A) | 2.1 | 1.0 | 22.86 |
| Austrian pine | 52.3 | 7,326 | 17,395.9 | 24,493 | 31,819 (N/A) | 2.0 | 1.4 | 32.97 |
| Black walnut | 115.6 | 16,202 | 40,850.4 | 57,517 | 73,720 (N/A) | 1.7 | 3.3 | 89.68 |
| American elm | 87.3 | 12,237 | 29,489.2 | 41,521 | 53,758 (N/A) | 1.5 | 2.4 | 76.58 |
| Siberian elm | 68.0 | 9,526 | 23,141.6 | 32,583 | 42,109 (N/A) | 1.1 | 1.9 | 80.21 |
| Japanese zelkova | 47.4 | 6,646 | 17,871.5 | 25,163 | 31,809 (N/A) | 1.1 | 1.4 | 60.70 |
| Eastern white pine | 17.4 | 2,434 | 6,106.6 | 8,598 | 11,032 (N/A) | 1.1 | 0.5 | 21.21 |
| Swamp white oak | 9.4 | 1,312 | 4,011.8 | 5,649 | 6,961 (N/A) | 1.1 | 0.3 | 13.49 |
| White oak | 79.3 | 11,108 | 25,118.3 | 35,367 | 46,475 (N/A) | 1.1 | 2.1 | 91.13 |
| Other street trees | 617.3 | 86,483 | 229,638.0 | 323,330 | 409,813 (N/A) | 25.0 | 18.2 | 34.60 |
| Citywide total | 3,408.5 | 477,534 | 1,260,313.0 | 1,774,521 | 2,252,055 (N/A) | 100.0 | 100.0 | 47.55 |

## Appendix L

Annual Benefits Carbon Dioxide (by Species and Zone)

## Ann Arbor

Annual CO Benefits of Public Trees by Species
7/22/2009

| Species | Sequestered (lb) | Sequestered (\$) | Decomposition Release (lb) | Maintenance Release (lb) | Total Released (\$) | Avoided <br> (lb) | Avoided <br> (\$) | Net Total <br> (lb) | Total Standard (\$) Error | \% of Total Trees | $\%$ of <br> Total \$ | Avg. <br> \$/tree |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Norway maple | 1,685,927 | 5,631 | -303,466 | -65,582 | -1,233 | 1,474,400 | 4,924 | 2,791,279 | 9,323 (N/A) | 13.2 | 17.8 | 1.49 |
| Sugar maple | 1,267,463 | 4,233 | -286,812 | -69,974 | -1,192 | 1,540,337 | 5,145 | 2,451,014 | 8,186 (N/A) | 11.3 | 15.6 | 1.53 |
| Thornless honeylocust | 522,501 | 1,745 | -183,791 | -33,650 | -726 | 1,134,570 | 3,789 | 1,439,630 | 4,808 (N/A) | 7.6 | 9.2 | 1.33 |
| Red maple | 215,178 | 719 | -52,102 | -18,186 | -235 | 346,742 | 1,158 | 491,632 | 1,642 (N/A) | 6.9 | 3.1 | 0.50 |
| Apple | 154,160 | 515 | -38,459 | -16,600 | -184 | 233,271 | 779 | 332,373 | 1,110 (N/A) | 6.3 | 2.1 | 0.37 |
| Silver maple | 634,900 | 2,121 | -148,307 | -38,547 | -624 | 912,590 | 3,048 | 1,360,636 | 4,545 (N/A) | 4.6 | 8.7 | 2.07 |
| Littleleaf linden | 232,811 | 778 | -80,214 | -17,649 | -327 | 354,612 | 1,184 | 489,560 | 1,635 (N/A) | 4.1 | 3.1 | 0.83 |
| London planetree | 251,756 | 841 | -42,163 | -18,414 | -202 | 496,308 | 1,658 | 687,487 | 2,296 (N/A) | 3.3 | 4.4 | 1.49 |
| Northern red oak | 193,116 | 645 | -35,854 | -9,517 | -152 | 259,501 | 867 | 407,246 | 1,360 (N/A) | 2.4 | 2.6 | 1.21 |
| Callery pear | 129,170 | 431 | -3,903 | -1,272 | -17 | 109,074 | 364 | 233,069 | 778 (N/A) | 2.4 | 1.5 | 0.70 |
| Colorado spruce | 37,885 | 127 | -10,671 | -6,439 | -57 | 109,819 | 367 | 130,594 | 436 (N/A) | 2.1 | 0.8 | 0.44 |
| Austrian pine | 51,063 | 171 | -15,963 | -8,291 | -81 | 157,499 | 526 | 184,309 | 616 (N/A) | 2.0 | 1.2 | 0.64 |
| Black walnut | 191,362 | 639 | -75,928 | -11,947 | -294 | 348,329 | 1,163 | 451,815 | 1,509 (N/A) | 1.7 | 2.9 | 1.84 |
| American elm | 241,729 | 807 | -59,794 | -9,222 | -231 | 263,088 | 879 | 435,800 | 1,456 (N/A) | 1.5 | 2.8 | 2.07 |
| Siberian elm | 186,259 | 622 | -51,032 | -7,167 | -194 | 204,788 | 684 | 332,848 | 1,112 (N/A) | 1.1 | 2.1 | 2.12 |
| Japanese zelkova | 70,596 | 236 | -17,218 | -4,278 | -72 | 142,872 | 477 | 191,971 | 641 (N/A) | 1.1 | 1.2 | 1.22 |
| Eastern white pine | 18,060 | 60 | -4,618 | -3,214 | -26 | 52,318 | 175 | 62,545 | 209 (N/A) | 1.1 | 0.4 | 0.40 |
| Swamp white oak | 24,488 | 82 | -3,436 | -1,485 | -16 | 28,213 | 94 | 47,780 | 160 (N/A) | 1.1 | 0.3 | 0.31 |
| White oak | 309,315 | 1,033 | -63,099 | -9,148 | -241 | 238,818 | 798 | 475,886 | 1,589 (N/A) | 1.1 | 3.0 | 3.12 |
| Other street trees | 1,248,141 | 4,169 | -318,317 | -82,864 | -1,340 | 1,859,276 | 6,210 | 2,706,236 | 9,039 (N/A) | 25.0 | 17.2 | 0.76 |
| Citywide total | 7,665,878 | 25,604 | -1,795,148 | -433,447 | -7,444 | 10,266,425 | 34,290 | 15,703,708 | 52,450 (N/A) | 100.0 | 100.0 | 1.11 |

## Appendix M

Annual Benefits Air Quality (by Species and Zone)

## Ann Arbor

## Annual Air Quality Benefits of Public Trees by Species

## 7/23/2009

| Species | Deposition (lb) |  |  |  | Total Depos. <br> (\$) | Avoided (lb) |  |  |  | Total Avoided (\$) | BVOC <br> Emissions <br> (lb) | BVOC <br> Emissions (\$) | Total <br> (lb) | Total Standard (\$) Error | \% of Total Trees | Avg. <br> \$/tree |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{O}_{3}$ | $\mathrm{NO}_{2}$ | PM 10 | $\mathrm{SO}_{2}$ |  | $\mathrm{NO}_{2}$ | PM 10 | VOC | $\mathrm{SO}_{2}$ |  |  |  |  |  |  |  |
| Norway maple | 2,602.9 | 1,125.2 | 1,278.0 | 427.1 | 29,218 | 4,225.1 | 273.9 | 162.7 | 2,148.6 | 29,522 | -367.1 | -848 | 11,876.4 | 57,893 (N/A) | 13.2 | 9.24 |
| Sugar maple | 2,755.6 | 1,191.3 | 1,353.0 | 452.2 | 30,933 | 4,453.3 | 289.0 | 172.1 | 2,244.9 | 31,052 | -1,489.7 | -3,441 | 11,421.5 | 58,543 (N/A) | 11.3 | 10.92 |
| Thornless honeylocust | 1,941.3 | 786.6 | 921.9 | 297.8 | 21,219 | 3,192.8 | 206.5 | 122.1 | 1,653.0 | 22,406 | -840.5 | -1,942 | 8,281.6 | 41,683 (N/A) | 7.6 | 11.54 |
| Red maple | 582.3 | 251.5 | 290.5 | 97.2 | 6,579 | 1,049.2 | 68.5 | 41.2 | 505.6 | 7,240 | -178.7 | -413 | 2,707.3 | 13,406 (N/A) | 6.9 | 4.10 |
| Apple | 446.6 | 195.0 | 217.8 | 76.1 | 5,020 | 754.1 | 49.6 | 30.3 | 340.4 | 5,128 | -3.6 | -8 | 2,106.2 | 10,139 (N/A) | 6.3 | 3.38 |
| Silver maple | 1,835.8 | 793.6 | 901.3 | 301.2 | 20,608 | 2,575.6 | 166.6 | 98.6 | 1,329.7 | 18,062 | -614.3 | -1,419 | 7,388.2 | 37,250 (N/A) | 4.6 | 16.98 |
| Littleleaf linden | 559.9 | 235.3 | 269.8 | 86.0 | 6,191 | 1,009.5 | 65.4 | 38.8 | 516.7 | 7,065 | -296.5 | -685 | 2,484.9 | 12,571 (N/A) | 4.1 | 6.42 |
| London planetree | 897.4 | 377.2 | 432.5 | 137.8 | 9,924 | 1,399.4 | 90.5 | 53.6 | 723.1 | 9,816 | -926.5 | -2,140 | 3,185.1 | 17,600 (N/A) | 3.3 | 11.42 |
| Northern red oak | 486.3 | 210.0 | 242.6 | 81.2 | 5,494 | 738.3 | 47.8 | 28.4 | 378.1 | 5,168 | -436.1 | -1,007 | 1,776.5 | 9,654 (N/A) | 2.4 | 8.58 |
| Callery pear | 214.6 | 93.7 | 104.6 | 36.6 | 2,412 | 307.0 | 19.9 | 11.7 | 158.9 | 2,154 | 0.0 | 0 | 947.0 | 4,566 (N/A) | 2.4 | 4.10 |
| Colorado spruce | 253.1 | 121.0 | 160.4 | 68.5 | 3,288 | 303.2 | 19.6 | 11.5 | 160.0 | 2,138 | -557.1 | -1,287 | 540.2 | 4,139 (N/A) | 2.1 | 4.17 |
| Austrian pine | 357.9 | 171.2 | 226.8 | 96.8 | 4,651 | 429.7 | 27.7 | 16.2 | 229.4 | 3,038 | -750.5 | -1,734 | 805.4 | 5,955 (N/A) | 2.0 | 6.17 |
| Black walnut | 662.5 | 278.5 | 319.3 | 101.7 | 7,326 | 974.7 | 63.0 | 37.2 | 507.5 | 6,849 | 0.0 | 0 | 2,944.4 | 14,175 (N/A) | 1.7 | 17.25 |
| American elm | 489.4 | 198.3 | 232.4 | 75.1 | 5,349 | 722.2 | 46.6 | 27.4 | 383.2 | 5,099 | 0.0 | 0 | 2,174.5 | 10,448 (N/A) | 1.5 | 14.88 |
| Siberian elm | 378.2 | 153.3 | 179.6 | 58.0 | 4,134 | 564.1 | 36.4 | 21.4 | 298.3 | 3,979 | 0.0 | 0 | 1,689.3 | 8,113 (N/A) | 1.1 | 15.45 |
| Japanese zelkova | 208.9 | 87.8 | 100.7 | 32.1 | 2,311 | 411.2 | 26.7 | 15.9 | 208.2 | 2,870 | 0.0 | 0 | 1,091.4 | 5,181 (N/A) | 1.1 | 9.89 |
| Eastern white pine | 124.2 | 59.4 | 78.7 | 33.6 | 1,614 | 146.1 | 9.4 | 5.6 | 76.2 | 1,027 | -276.0 | -638 | 257.3 | 2,004 (N/A) | 1.1 | 3.85 |
| Swamp white oak | 50.1 | 21.7 | 25.0 | 8.4 | 566 | 86.1 | 5.6 | 3.4 | 41.1 | 593 | -45.6 | -105 | 195.8 | 1,054 (N/A) | 1.1 | 2.04 |
| White oak | 505.9 | 218.5 | 252.4 | 84.4 | 5,716 | 638.8 | 41.0 | 23.9 | 347.8 | 4,539 | -449.1 | -1,038 | 1,663.5 | 9,217 (N/A) | 1.1 | 18.07 |
| Other street trees | 3,439.8 | 1,491.0 | 1,756.6 | 606.9 | 39,341 | 5,320.7 | 344.8 | 204.8 | 2,709.4 | 37,190 | -1,971.5 | -4,554 | 13,902.6 | 71,977 (N/A) | 25.0 | 6.08 |
| Citywide total | 18,792.6 | 8,060.0 | 9,343.9 | 3,158.7 | 211,894 | 29,301.3 | 1,898.4 | 1,126.9 | 14,960.3 | 204,934 | -9,203.0 | -21,259 | 77,439.1 | 395,569 (N/A) | 100.0 | 8.35 |

## Appendix N <br> Annual Benefits Stormwater (by Species and Zone)

## Ann Arbor

Annual Stormwater Benefits of Public Trees by Species
7/23/2009

| Species | Total rainfall interception (Gal) | Total (\$) | Standard <br> Error | \% of Total Trees | $\%$ of Total \$ | Avg. <br> \$/tree |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Norway maple | 7,754,549 | 62,041 | (N/A) | 13.2 | 11.9 | 9.90 |
| Sugar maple | 10,909,893 | 87,285 | (N/A) | 11.3 | 16.8 | 16.29 |
| Thornless honeylocust | 5,918,937 | 47,355 | (N/A) | 7.6 | 9.1 | 13.11 |
| Red maple | 2,452,458 | 19,621 | (N/A) | 6.9 | 3.8 | 5.99 |
| Apple | 1,186,362 | 9,492 | (N/A) | 6.3 | 1.8 | 3.17 |
| Silver maple | 7,096,829 | 56,779 | (N/A) | 4.6 | 10.9 | 25.88 |
| Littleleaf linden | 1,841,453 | 14,733 | (N/A) | 4.1 | 2.8 | 7.52 |
| London planetree | 2,927,898 | 23,425 | (N/A) | 3.3 | 4.5 | 15.20 |
| Northern red oak | 1,660,411 | 13,284 | (N/A) | 2.4 | 2.6 | 11.81 |
| Callery pear | 683,127 | 5,465 | (N/A) | 2.4 | 1.1 | 4.91 |
| Colorado spruce | 825,233 | 6,602 | (N/A) | 2.1 | 1.3 | 6.66 |
| Austrian pine | 1,135,852 | 9,087 | (N/A) | 2.0 | 1.8 | 9.42 |
| Black walnut | 2,464,148 | 19,715 | (N/A) | 1.7 | 3.8 | 23.98 |
| American elm | 1,753,129 | 14,026 | (N/A) | 1.5 | 2.7 | 19.98 |
| Siberian elm | 1,351,522 | 10,813 | (N/A) | 1.1 | 2.1 | 20.60 |
| Japanese zelkova | 711,938 | 5,696 | (N/A) | 1.1 | 1.1 | 10.87 |
| Eastern white pine | 407,261 | 3,258 | (N/A) | 1.1 | 0.6 | 6.27 |
| Swamp white oak | 176,838 | 1,415 | (N/A) | 1.1 | 0.3 | 2.74 |
| White oak | 1,778,791 | 14,231 | (N/A) | 1.1 | 2.7 | 27.90 |
| Other street trees | 11,945,720 | 95,572 | (N/A) | 25.0 | 18.4 | 8.07 |
| Citywide total | 64,982,349 | 519,895 | (N/A) | 100.0 | 100.0 | 10.98 |

## Appendix 0

Annual Benefits, Aesthetic, and Other Value (by Species and Zone)

Ann Arbor
Annual Aesthetic/Other Benefits of Public Trees by Species
7/23/2009

| Species | Total (\$) | Standard <br> Error | $\%$ of Total Trees | $\%$ of Total \$ | Avg. \$/tree |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Norway maple | 185,782 | (N/A) | 13.2 | 13.6 | 29.66 |
| Sugar maple | 186,027 | (N/A) | 11.3 | 13.6 | 34.71 |
| Thornless honeylocust | 144,399 | (N/A) | 7.6 | 10.6 | 39.98 |
| Red maple | 94,891 | (N/A) | 6.9 | 6.9 | 28.99 |
| Apple | 28,417 | (N/A) | 6.3 | 2.1 | 9.48 |
| Silver maple | 63,175 | (N/A) | 4.6 | 4.6 | 28.79 |
| Littleleaf linden | 42,140 | (N/A) | 4.1 | 3.1 | 21.51 |
| London planetree | 49,622 | (N/A) | 3.3 | 3.6 | 32.20 |
| Northern red oak | 29,499 | (N/A) | 2.4 | 2.2 | 26.22 |
| Callery pear | 43,901 | (N/A) | 2.4 | 3.2 | 39.41 |
| Colorado spruce | 14,781 | (N/A) | 2.1 | 1.1 | 14.90 |
| Austrian pine | 14,453 | (N/A) | 2.0 | 1.1 | 14.98 |
| Black walnut | 47,056 | (N/A) | 1.7 | 3.4 | 57.25 |
| American elm | 40,179 | (N/A) | 1.5 | 2.9 | 57.24 |
| Siberian elm | 30,654 | (N/A) | 1.1 | 2.2 | 58.39 |
| Japanese zelkova | 26,341 | (N/A) | 1.1 | 1.9 | 50.27 |
| Eastern white pine | 7,649 | (N/A) | 1.1 | 0.6 | 14.71 |
| Swamp white oak | 11,986 | (N/A) | 1.1 | 0.9 | 23.23 |
| White oak | 26,647 | (N/A) | 1.1 | 2.0 | 52.25 |
| Other street trees | 280,703 | (N/A) | 25.0 | 20.5 | 23.70 |
| Citywide total | 1,368,302 | (N/A) | 100.0 | 100.0 | 28.89 |

## Appendix P <br> Annual Benefits, Net Benefits, and Cost Summary

## Ann Arbor

Total Annual Benefits, Net Benefits, and Costs for Public Trees
7/23/2009

| Benefits | Total (\$) Standard Error | \$/tree Standard Error | \$/capita Standard Error |
| :--- | ---: | ---: | ---: |
| Energy | $2,252,055(\mathrm{~N} / \mathrm{A})$ | $47.55(\mathrm{~N} / \mathrm{A})$ | $19.75(\mathrm{~N} / \mathrm{A})$ |
| CO2 | $52,450(\mathrm{~N} / \mathrm{A})$ | $1.11(\mathrm{~N} / \mathrm{A})$ | 0.46 (N/A) |
| Air Quality | $395,569(\mathrm{~N} / \mathrm{A})$ | $8.35(\mathrm{~N} / \mathrm{A})$ | 3.47 (N/A) |
| Stormwater | $519,895(\mathrm{~N} / \mathrm{A})$ | $10.98(\mathrm{~N} / \mathrm{A})$ | $4.56(\mathrm{~N} / \mathrm{A})$ |
| Aesthetic/Other | $1,368,302(\mathrm{~N} / \mathrm{A})$ | $28.89(\mathrm{~N} / \mathrm{A})$ | $12.00(\mathrm{~N} / \mathrm{A})$ |
| Total Benefits | $4,588,271(\mathrm{~N} / \mathrm{A})$ | $96.88(\mathrm{~N} / \mathrm{A})$ | $40.25(\mathrm{~N} / \mathrm{A})$ |
| Costs |  |  |  |
| Planting | 380,414 | 8.03 | 3.34 |
| Contract Pruning | 329,260 | 6.95 | 2.89 |
| Pest Management | 303 | 0.01 | 0.00 |
| Irrigation | 1,012 | 0.02 | 0.01 |
| Removal | 585,544 | 12.36 | 5.14 |
| Administration | 210,726 | 4.45 | 1.85 |
| Inspection/Service | 17,918 | 0.38 | 0.16 |
| Infrastructure Repairs | 0 | 0.00 | 0.00 |
| Litter Clean-up | 76,858 | 1.62 | 0.67 |
| Liability/Claims | 0 | 0.00 | 0.00 |
| Other Costs | 107,766 | 2.28 | 0.95 |
| Total Costs | $1,709,801$ | 36.10 | 15.00 |
| Net Benefits | $2,878,470(\mathrm{~N} / \mathrm{A})$ | $60.78(\mathrm{~N} / \mathrm{A})$ | $25.25(\mathrm{~N} / \mathrm{A})$ |
| Benefit-cost ratio | $2.68(\mathrm{~N} / \mathrm{A})$ |  |  |

